
Licentiate Thesis in Software and Computer Systems

Artificial Software Diversification
for WebAssembly
JAVIER CABRERA-ARTEAGA

Stockholm, Sweden 2022

kth royal institute
of technology

Artificial Software Diversification
for WebAssembly
JAVIER CABRERA-ARTEAGA

Licentiate Thesis in Software and Computer Systems
KTH Royal Institute of Technology
Stockholm, Sweden 2022

Academic Dissertation which, with due permission of the KTH Royal Institute of Technology,
is submitted for public defence for the Degree of Licentiate of Engineering on Tuesday the 18th
October 2022, at 10:00 a.m. in D31, Lindstedtsvägen 5, Stockholm.

© Javier Cabrera-Arteaga

ISBN 978-91-8040-327-6
TRITA TRITA-ICT TRITA-EECS-AVL-2022:52

Printed by: Universitetsservice US-AB, Sweden 2022

iii

Abstract

WebAssembly has become the fourth official web language, along with
HTML, CSS and JavaScript since 2019. WebAssembly allows web browsers
to execute existing programs or libraries written in other languages, such as
C/C++ and Rust. In addition, WebAssembly evolves to be part of edge-cloud
computing platforms. Despite being designed with security as a premise,
WebAssembly is not exempt from vulnerabilities. Therefore, potential
vulnerabilities and flaws are included in its distribution and execution,
highlighting a software monoculture problem. On the other hand, while
software diversity has been shown to mitigate monoculture, no diversification
approach has been proposed for WebAssembly. This work proposes software
diversity as a preemptive solution to mitigate software monoculture for
WebAssembly.

Besides, we provide implementations for our approaches, including a
generic LLVM superdiversifier that potentially extends our ideas to other
programming languages. We empirically demonstrate the impact of our
approach by providing Randomization and Multivariant Execution (MVE)
for WebAssembly. Our results show that our approaches can provide
an automated end-to-end solution for the diversification of WebAssembly
programs. The main contributions of this work are:

We highlight the lack of diversification techniques for WebAssembly
through an exhaustive literature review.
We provide randomization and multivariant execution for WebAssembly
with the implementation of two tools, CROW and MEWE respectively.
We include constant inferring as a new code transformation to generate
software diversification for WebAssembly.
We empirically demonstrate the impact of our technique by evaluating
the static and dynamic behavior of the generated diversification.

Our approaches harden observable properties commonly used to conduct
attacks, such as static code analysis, execution traces, and execution time.

Keywords: WebAssembly, LLVM, Software Diversity, Automatic Software
Engineering, Security

iv

Sammanfattning

WebAssembly har sedan 2019 blivit det fjärde officiella webbspråket,
tillsammans med HTML, CSS och JavaScript sedan 2019. Detta nya språk
tillåter webbläsaren att köra befintliga program eller bibliotek skrivna på
andra språk, såsom C/C++ och Rust. Dessutom utvecklas WebAssembly
för att vara en del av edge-cloud dator -beräkningsplattformar. Trots att
WebAssembly är designatd med säkerhet i fokus som en premiss är det
inte undantaget från sårbarheter. Därför ingår potentiella sårbarheter och
brister i dess distribution och exekvering, vilket belyser ett av problemen
med mjukvarumonokultur. MÅ andra sidan, medan mångfald av programvara
har visat sig mildra monokultur, har ingen diversifieringsmetod föreslagits för
WebAssembly. Denna avhandling föreslår en mångfald av programvara som
en förebyggande lösning med syfte att minska programvarumonokultur för
WebAssembly.

Dessutom tillhandahåller vi implementeringar för våra tillvägagångssätt,
däriblandinklusive en generisk LLVM- superdiversifierare som potentiellt
utökar våra idéer till andra programmeringsspråk. Vi visar effekten av vårt
tillvägagångssätt empiriskt genom att tillhandahålla rRandomisering och
mMultivariante Exekvering (MVE) för WebAssembly. Våra resultat visar
att våra tillvägagångssätt kan ge en automatiserad end-to-end lösning för
diversifiering av program i WebAssembly. Detta arbetes viktigaste bidragen
från detta arbete är:

Vi lyfter fram bristen på diversifieringstekniker för WebAssembly genom
en uttömmande litteraturgenomgång.
Vi tillhandahåller en implementationeringen av två verktyg, CROW och
MEWE, som genomför tillhandahåller randomisering och multivariant
exekvering för WebAssembly.
Vi inkluderar “constant inferring” som en ny kod-transformation för att
generera mjukvarudiversifiering för WebAssembly.
Vi demonstrerar empiriskt effekten av vår teknik genom att
utvärdera det statiska och dynamiska beteendet hos den genererade
diversifieringen.

Våra metoder härdar mot observerbara egenskaper som vanligtvis
används för att utföra attacker, som statisk kodanalys, exekveringsspår och
exekveringstid.

Keywords: WebAssembly, LLVM, Software Diversity, Automatic
Software Engineering, Security

v

Acknowledgements

Paraphrasing a good friend of mine: the people that contributed to this work know
who they are, and I prefer to thank them personally.

Javier Cabrera-Arteaga,
Stockholm, May 2022

Contents

Contents vi

I Thesis 1

1 Introduction 2
1.1 Software Monoculture 3
1.2 Software Diversification 4
1.3 Research questions. 4
1.4 Contributions 5
1.5 Publications 6

2 Background & State of the art 7
2.1 Wasm overview 7

2.1.1 From source to Wasm 8
2.1.2 WebAssembly specification 9
2.1.3 WebAssembly security 12

2.2 Software Diversification 12
2.2.1 Variants’ generation. 13
2.2.2 Variants’ equivalence 14
2.2.3 Usages of Software Diversity. 15

2.3 Open challenges. 17

3 Automatic Diversity for Wasm 20
3.1 Global approach 20
3.2 CROW: Code Randomization of WebAssembly 21

3.2.1 Exploration 22

vi

CONTENTS vii

3.2.2 Constant inferring 23
3.2.3 Removing subsequent optimizations for LLVM . . . 24

3.3 MEWE: Multi-variant Execution for WebAssembly 25
3.3.1 Multivariant generation 25
3.3.2 The Mixer 28

3.4 Accompanying Source Code 28

4 Methodology 29
4.1 Corpora 29
4.2 RQ1. To what extent can we artificially generate program

variants for WebAssembly?. 30
4.3 RQ2. To what extent are the generated variants dynamically

different? 34
4.4 RQ3. To what extent do the artificial variants exhibit

different execution times on edge-cloud platforms? 36

5 Results 39
5.1 RQ1. To what extent can we artificially generate program

variants for WebAssembly?. 39
5.1.1 Program’s population 39
5.1.2 Challenges for automatic diversification. 40
5.1.3 Properties for large diversification. 41

5.2 RQ2. To what extent are the generated variants dynamically
different? 42
5.2.1 Stack operation traces.. 42
5.2.2 Execution times. 43

5.3 RQ3. To what extent do the artificial variants exhibit
different execution times on edge-cloud platforms? 45
5.3.1 Execution times 46

6 Conclusion and Future Work 48
6.1 Summary of the results 48
6.2 Future work 49

Bibliography 51

viii CONTENTS

II Included papers 60

Superoptimization of WebAssembly Bytecode 62

CROW: Code Diversification for WebAssembly 68

Multi-Variant Execution at the Edge 81

Scalable Comparison of JavaScript V8 Bytecode Traces 94

Part I

Thesis

1

01 INTRODUCTION

"Jealous stepmother and sisters; magical aid by a beast; a marriage won
by gifts magically provided; a bird revealing a secret; a recognition by aid
of a ring; or show; or what not; a dénouement of punishment; a happy
marriage - all those things, which in sequence, make up Cinderella, may
and do occur in an incalculable number of other combinations. "
— MR. Cox 1893, Cinderella: Three hundred and forty-five variants [102]

The first web browser, Nexus [94], appeared in 1990. At that moment, web browsing
was only about retrieving and showing small and static HTML web pages. In other
words, users read the content of pages without interactions. The growing computing
power of devices, the spread of the internet, and the need for more interaction and
experiences for users encouraged the idea of executing code along with web pages.
The Netscape browser made possible the execution of code on the client-side with
the introduction of the JavaScript [68] language in 1995. Remarkably, all browsers
have supported JavaScript since Netscape. Nowadays, most web pages include not
only HTML, but also include JavaScript code that is executed in client computers.
During the past decades, web browsers have become JavaScript language virtual
machines. They evolved to complex systems that can run full-fledged applications,
like video and audio players, animation creators, and PDF document renderers such
as the one showing this document.

JavaScript is currently the most used scripting language in all modern web
browsers [61]. However, JavaScript faces several limitations related to the
characteristics of the language. For example, any JavaScript engine requires the
parsing and recompiling the JavaScript code, which implies a significant overhead.
Moreover, JavaScript faces security issues [75]. For example, JavaScript lacks of
memory isolation, making possible to extract pieces of information from others
processes [9]. Because of these problems, the Web Consortium (W3C) standardized
in 2017 a bytecode for the web environment, the WebAssembly (Wasm) language.

Wasm is designed to be fast, portable, self-contained, and secure [47]. All Wasm
programs are compiled ahead-of-time from source languages such as C/C++ and
Rust. Wasm is created by third-party compilers that might include optimizations
like in the case of LLVM. The Wasm language defines its Instruction Set
Architecture [44] as an abstraction close to machine code instructions but agnostic
to CPU architectures. Thus, web browsers can use it to rapidly compile to the
target architectures in a one-to-one translation process.

WebAssembly evolved outside web browsers. Some works demonstrated that
using WebAssembly as an intermediate layer is better in terms of startup and

2

1.1. SOFTWARE MONOCULTURE 3

memory usage than containerization and virtualization [23, 39]. Consequently, in
2019, the Bytecode Alliance [34] proposed WebAssembly System Interface (WASI)
[15]. WASI pionered the execution of WebAssembly with a POSIX system interface
protocol, making possible to execute Wasm directly in the operating system.
Therefore, it standardizes the adoption of WebAssembly in heterogeneous platforms
[29], making it suitable for edge-cloud computing platforms [6, 19]

1.1 Software Monoculture

Web browsers and JavaScript have nearly three decades of development. Since then,
web browsers have grown, reaching several implementations [82, 12]. Nevertheless,
only Firefox, Chrome, Safari, and Edge dominate on user computers. This means
that, for 5 arbitrary devices (computers, tablets, smartphones) in a world of
millions, at least two of them use the same web browser. This highlights a software
monoculture problem [87], as an ecosystem of machines running the exact same
software. The monoculture concept is an analogy from biology [71]. It describes
an ecosystem that faces extinction due the lack of diversity as all individuals share
the exact same vulnerabilities. In other words, many applications can crash due to
a single shared vulnerability.

Nowadays, the serving of web pages, including WebAssembly code, is centralized
and provided through main servers [33]. Thus, a similar argument for software
monoculture can be used for the Wasm code that is served to web browsers.
Despite being designed for sandboxing and secure execution, Wasm is not exempt
from vulnerabilities [27]. For example, Wasm engines are vulnerable to speculative
execution [7], and C/C++ source code vulnerabilities might be ported to Wasm
binaries [1]. Therefore, the sharing of the Wasm code through web browsers, also
includes Wasm vulnerabilities.

The software monoculture problem escalates if we consider the edge-cloud
computing platforms and how they are adopting Wasm to provide services, as we
previously mentioned. Concretely, along with browser clients, thousands of edge
devices running Wasm as backend services might be affected due to vulnerabilities
sharing. This means that if one node in an edge network is vulnerable, all the
others are vulnerable in the exact same manner as the same binary is replicated on
each node. In other words, the same attacker payload would break all edge nodes
at once. This illustrates how Wasm execution is fragile with respect to systemic
vulnerabilities for the whole internet. Let us take the example of what happened
on June 8, 2021, with Fastly [17]. That day, the whole internet suffered a 45
minutes disruption because of a failure when one Wasm binary was deployed at
Fastly. The complete Fastly platform crashed. The bug, combined with most web
pages being CDN-dependant, created a catastrophe. Therefore, a single distributed
Wasm binary could unleash the same incident [16].

One might think that the solution is to adopt more web browser and interpreters
implementations. However, this is virtually impossible as 4 web browsers dominate

4 CHAPTER 1. INTRODUCTION

the market and edge-cloud computing platforms are transparently executed in the
backend. Thus, a solution in this direction is doomed to fail. Another solution
is to provide different WebAssembly codes. For example, a different source code,
yet equivalent, can be provided when a web page requests it [14]. Consequently,
millions of computers would execute different codes even though they use the same
web browser. This strategy is called Software Diversification.

1.2 Software Diversification

Software Diversification is the process of finding, creating, and deploying program
variants of a given original program [60] for the sake of security. Cohen et al. [93]
and Forrest et al. [91] pioneered this field by proposing software diversification
through code transformations. They proposed to produce variants of programs
while preserving their functionalities, aiming to mitigate vulnerabilities. Since
then, transformations aiming at reducing the predictability of observable behavior
of programs have been proposed. For example, works on this direction proposed to
diversify programs control flow [52], instruction set [89], or the system calls they use
[90]. Several of these transformations can be combined to produce less predictable
variants.

While previous works on software diversification demonstrated the removal of
vulnerabilities, in all cases, it can be used as a preemptive solution. For example, if a
vulnerability is present in one program variant, discovering and disseminating it will
not affect other variants. Software diversification has been widely researched, yet,
the field does not study its application to Wasm. Only Romano et al. [2] proposed
the intermixing JavaScript and Wasm function calls to provide obfuscation against
code analysis. For Wasm, no software diversification solution has been proposed,
primarily due to its novelty.

1.3 Research questions

In this dissertation, we aim to fill the gap in the state-of-the-art of software
diversification for Wasm. Three main research questions conduct our work. In
this section, we present them. Our research questions are formulated by merging
our publications and experiences during the creation of Software Diversification for
WebAssembly.

RQ1 To what extent can we artificially generate program variants for
WebAssembly?
With this research question, we quantitatively assess the static differences
between program variants created by our approach. We answer this question
at the population level, where a program population is the collection of one
original program and its generated variants. We aim to investigate the code
properties that increase or diminish diversification at population level.

1.4. CONTRIBUTIONS 5

RQ2 To what extent are the generated variants dynamically different?
With this research question, we complement RQ1. We aim to investigate the
impact on execution traces and execution times of the generated program
variants.

RQ3 To what extent do the artificial variants exhibit different execution
times on edge-cloud platforms?
With this research question, we aim to investigate the impact of Software
Diversification for WebAssembly in an emerging technology, edge-cloud
computing. We evaluate the impact of a novel multivariant execution
approach on real-world WebAssembly programs in a world-wide scale
experiment.

1.4 Contributions

This thesis proposes four main contributions. First, as a theoretical contribution,
we summarize the code transformations used to generate artificial software
diversification through an exhaustive literature review. Consequently, we highlight
the lack of diversification techniques for WebAssembly. Second, as a technical
contribution, we provide two tools, CROW [14] and MEWE [13]. CROW creates
Wasm program variants by using state-of-the-art code transformations. MEWE
merges several Wasm program variants in a multivariant execution schema [60].
In addition, we summarize the main challenges faced during their implementation,
such as i) program properties that make it prone to generate more variants and ii)
program properties that make the observable behavior of variants different. Besides,
we discuss the incorporation of a new code transformation. Third, we propose
a methodology to quantitatively evaluate the impact of our tools, assessing the
creation of artificial software diversification for WebAssembly. Fourth and final,
we empirically demonstrate the impact of our technique by evaluating the static
and dynamic behavior of the generated diversity. Our results show that creating
software diversification for Wasm is feasible. Our diversification approaches affect
the observable behavior such as static program properties, execution traces and
execution times.

6 CHAPTER 1. INTRODUCTION

1.5 Publications

This work is based on the following publications:

P1 Superoptimization of WebAssembly Bytecode [28]
Javier Cabrera-Arteaga, Shrinish Donde, Jian Gu, Orestis Floros, Lucas
Satabin, Benoit Baudry, Martin Monperrus
Conference Companion of the 4th International Conference on Art, Science,
and Engineering of Programming (Programming 2021), MoreVMs

P2 CROW: Code Diversification for WebAssembly [14]
Javier Cabrera-Arteaga, Orestis Floros, Oscar Vera-Pérez, Benoit Baudry,
Martin Monperrus
Network and Distributed System Security Symposium (NDSS 2021),
MADWeb

P3 Multi-Variant Execution at the Edge [13]
Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, Benoit Baudry
Under review

P4 Scalable Comparison of JavaScript V8 Bytecode Traces [33]
Javier Cabrera-Arteaga, Martin Monperrus, Benoit Baudry
11th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages (SPLASH 2019)

Thesis layout

This dissertation is organized in five chapters including this introduction. Chapter 2
presents the background and the state-of-the-art for WebAssembly and software
diversification. Chapter 3 describes our technical contributions, the main challenges
we faced and the engineering decisions carried out to implement our artifacts.
Chapter 4 describes the methodology followed to answer the three main research
questions driving this thesis. Chapter 5 details the main results of this work.
Chapter 6 concludes and discusses future work. In addition, this dissertation
contains the collection of research papers previously mentioned in this chapter.

02 BACKGROUND & STATE
OF THE ART

This chapter discusses the state-of-the-art in the areas of Wasm and Software
Diversification. In Section 2.1 we discuss the Wasm language, its motivation, how
Wasm binaries are generated, the language specification, and security-related issues.
In Section 2.2, we present a summary of Software Diversification, its foundational
concepts and highlighted related works. We select the discussed works by their
novelty, critical insights, and representativeness of their techniques. In Section 2.3,
we finalize the chapter by highlighting open challenges in state-of-the-art related
works.

2.1 Wasm overview

JavaScript is currently used in all modern web browsers to allow client-side
scripting. However, due to the complexity of this language, its security flaws and to
gain in performance, several alternatives appeared through the years. For example,
Java applets were introduced on web pages late in the 90s to execute Java bytecode
in the client side [46]. Similarly, Microsoft made two attempts with ActiveX in
1996 [92], and with Silverlight in 2007 [77]. All these attempts failed to persist or
had low adoption, mainly due to security issues and the lack of consensus on the
community of browser vendors.

In 2014, Alon Zakai and colleagues proposed the Emscripten tool [57].
Emscripten used a strict subset of JavaScript, asm.js, to allow low-level code such
as C to be compiled to JavaScript. Asm.js was first announced as an LLVM
backend [58]. This approach came with the benefits of having all the ahead-of-time
optimizations from LLVM, gaining in performance on browser clients [55] compared
to standard JavaScript code. Asm.js was faster than JavaScript because it limited
the language features to those that can be optimized in the LLVM pipeline. Besides,
it removed the majority of the dynamic characteristics of the language, limiting it
to numerical types, top-level functions, and one large array in the memory directly
accessed as raw data. Since asm.js was a subset of JavaScript it was compatible
with all engines at that moment. Asm.js demonstrated that client-code could be
improved with the right language design and standardization. The work of Van Es
et al. [48] proposed to shrink JavaScript to asm.js in a source-to-source strategy,
closing the cycle and extending the fact that asm.js was mainly a compilation target

7

8 CHAPTER 2. BACKGROUND & STATE OF THE ART

for C/C++ code. Nevertheless, JavaScript faces several limitations related to the
characteristics of the language. For example, any JavaScript engine requires the
parsing and recompiling the JavaScript code which implies a significant overhead.

Following the asm.js initiative, the W3C publicly announced the Wasm (Wasm)
language in 2017. Wasm is a binary instruction format for a stack-based virtual
machine and was officially consolidated by the work of Haas et al. [47] in 2017.
The announcement of Wasm marked the first step into the standardization of
bytecode in the web environment. Wasm is designed to be fast, portable, self-
contained and secure, and it outperforms asm.js [47]. Since 2017, the adoption
of Wasm keeps growing. For example; Adobe, announced a full online version of
Photoshop1 written in WebAssembly; game companies moved their development
from JavaScript to Wasm like is the case of a full Minecraft version2; and the case
of Blazor3, a .Net virtual machine implemented in Wasm, able to execute C# code
in the browser.

2.1.1 From source to Wasm
All Wasm programs are compiled ahead-of-time from source languages. LLVM
includes Wasm as a backend since release 7.1.0 published in May 20194, supporting
a broad range of frontend languages such as C/C++, Rust, Go or AssemblyScript5.
The resulting binary works similarly to a traditional shared library, it includes
instruction codes, symbols and exported functions. In Figure 2.1, we illustrate the
workflow from the creation of Wasm binaries to their execution in the browser. The
process starts by compiling the source code program to Wasm (Step 1). This step
includes ahead-of-time optimizations such as optimizations in the LLVM toolchain.

The step 2 builds the standard library for Wasm usually as JavaScript code.
This code includes the external functions that the Wasm binary needs for its
execution inside the host engine. For example, the functions to interact with the
DOM of the HTML page are imported in the Wasm binary during its call from the
JavaScript code. The standard library can be manually written, however, compilers
like Emscripten, Rust and Binaryen can generate it automatically, making this
process completely transparent to developers.

Finally, the third step (Step 3), includes the compilation and execution of
the client-side code. Most of the browser engines compile both the Wasm and
JavaScript codes to machine code. In the case of JavaScript, this process involves
JIT and hot code replacement during runtime. For Wasm, since it is closer to
machine code, and it is already optimized, this process is a one-to-one mapping.
For instance, in the case of V8, the compilation process only applies simple and fast

1https://twitter.com/Adobe/status/1453034805004685313?s=20&t=Zf1N7-WmzecA0K4V8R6
9lw

2https://satoshinm.github.io/NetCraft/
3https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
4https://github.com/llvm/llvm-project/releases/tag/llvmorg-7.1.0
5subset of the TypeScript language

https://twitter.com/Adobe/status/1453034805004685313?s=20&t=Zf1N7-WmzecA0K4V8R69lw
https://twitter.com/Adobe/status/1453034805004685313?s=20&t=Zf1N7-WmzecA0K4V8R69lw
https://satoshinm.github.io/NetCraft/
https://dotnet.microsoft.com/en-us/apps/aspnet/web-apps/blazor
https://github.com/llvm/llvm-project/releases/tag/llvmorg-7.1.0

2.1. WASM OVERVIEW 9

optimizations such as constant folding and dead code removal. Once V8 completes
the compilation process, the generated machine code for Wasm does not change
anymore and is the same used along all its executions. This analysis was validated
by conversations with the V8’s development team and by experimental studies in
one of our contributions [14].

Browser
engine

3

Browser

 Machine code

 Machine code

Exports
Wasm

binary

Source
Code

Wasm
Compiler

Imports

JavaScript
Standard library

1 to 1 translation
to machine code

Compilation+JIT

1

2

Figure 2.1: WebAssembly is built, then compiled by the host web browser and
finally executed.

Wasm can execute directly and is platform independent. Thus, the Internet
of Things (IoT) can be seen as the perfect match for Wasm [7, 26] outside web
browsers. IoT devices are heterogeneous in terms of architecture and platform as
the same for Edge computing. For example, Singh and colleagues [31] proposed a
virtual machine for Wasm in arduino based devices. On the other hand, Cloudflare
and Fastly adapted their platforms to provide edge computing services directly with
Wasm. In these cases, the standard library, instead of JavaScript, is provided by
any other language stack that the host environment supports.

In 2019, the Bytecode Alliance [34] proposed the WebAssembly System Interface
(WASI) [15]. WASI is the foundation to build Wasm code outside the browser with
a POSIX system interface platform. WASI standardizes the adoption of Wasm in
heterogeneous platforms [29].

2.1.2 WebAssembly specification
Wasm defines its own Instruction Set Architecture (ISA) [44]. It is an abstraction
close to machine code instructions but agnostic to CPU architectures. Thus, Wasm
is platform independent. The ISA of Wasm includes also the necessary components
that the binary requires to run in any host engine. A Wasm binary has a unique
module as its main component. A module is composed by sections, corresponding

10 CHAPTER 2. BACKGROUND & STATE OF THE ART

to 13 types6, each of them with an explicit semantic and a specific order inside the
module. This makes the compilation to machine code faster.

In Listing 2.1 and Listing 2.2 we illustrate a C program and the Wasm program
that results from its compilation. The C function contains: heap allocation, external
function declaration and the definition of a function with a loop, conditional
branching, function calls and memory accesses. The code in Listing 2.2 shows
the textual format for the generated Wasm. The module in this case first defines
the signature of the functions (Line 2, Line 3 and Line 4) that help in the validation
of the binary defining its parameter and result types. The information exchange
between the host and the Wasm binary might be in two ways, exporting and
importing functions, memory and globals to and from the host engine (Line 5,
Line 35 and Line 36). The definition of the function (Line 6) and its body follows
the last import declaration at Line 5.

The function body is composed of local-variable declarations and typed
instructions that are evaluated using a virtual stack (Line 7 to Line 32 in
Listing 2.2). Each instruction reads its operands from the stack and pushes back
the result. The result of a function call is the top value of the stack at the end of
the execution. In the case of Listing 2.2, the result value of the main function is
the calculation of the last instruction, i32.add at Line 32. A valid Wasm binary
should have a valid stack structure that is verified during its translation to machine
code. The stack validation is carried out using the static types of Wasm, i32 for
32 bits signed integer, i64 for 64 bits signed integer, f32 for 32 bits float and f64
for 64 bits float. As the listing shows, instructions are annotated with a numeric
type.

Wasm manages the memory in a restricted way. A Wasm module has a linear
memory component that is accessed with i32 pointers (integer of 32 bits) and
should be isolated from the virtual stack. The declaration of the linear data in
the memory is showed in Line 37. The memory access is illustrated in Line 15.
This memory is usually bound in browser engines to 4Gb of size, and it is only
shareable between the process that instantiate the Wasm binary and the binary
itself (explicitly declared in Line 33 and Line 36). This ensures the isolation of the
execution of Wasm code.

Wasm also provides global variables in their four primitive types. Global
variables (Line 34) are only accessible by their declaration index, and it is not
possible to dynamically address them. For functions, Wasm follows the same
mechanism, either the functions are called by their index (Line 30) or using a
static table of function declarations. The latter allows modeling dynamic calls of
functions (through pointers) from languages such as C/C++, for which the Wasm’s
compiler is in charge of populating the static table of functions.

In Wasm, all instructions are grouped into blocks, where the start of a function
is the root block. Two consecutive block declarations can be appreciated in Line 10
and Line 11 of Listing 2.2. Control flow structures jump between block boundaries

6https://webassembly.github.io/spec/core/binary/modules.html#sections

https://webassembly.github.io/spec/core/binary/modules.html#sections

2.1. WASM OVERVIEW 11

Listing 2.1: Example C function.
// Some raw data
const int A [250];

// Imported function
int ftoi(float a);

int main () {
for(int i = 0; i < 250; i++) {

if (A[i] > 100)
return A[i] + ftoi

↪→ (12.54) ;
}

return A[0];
}

Listing 2.2: Wasm code for Listing 2.1.
1 (module
2 (type (;0;) (func (param f32) (

↪→ result i32)))
3 (type (;1;) (func))
4 (type (;2;) (func (result i32)))
5 (import "env" "ftoi" (func $ftoi (

↪→ type 0)))
6 (func $main (type 2) (result i32)
7 (local i32 i32)
8 i32. const -1000
9 local .set 0

10 block ; label = @1;
11 loop ; label = @2;
12 i32. const 0
13 local .get 0
14 i32.add
15 i32.load
16 local .tee 1
17 i32. const 101
18 i32.ge_s
19 br_if 1 ;@1;
20 local .get 0
21 i32. const 4
22 i32.add
23 local .tee 0
24 br_if 0 ;@2;
25 end
26 i32. const 0
27 return
28 end
29 f32. const 0x1 .9147 aep +3
30 call $ftoi
31 local .get 1
32 i32.add)
33 (memory (;0;) 1)
34 (global (;4;) i32 (i32. const 1000))
35 (export " memory " (memory 0))
36 (export "A" (global 2))
37 (data $data (0) " \00\00\00\00... ")
38)

and not to any position in the code like regular assembly code. A block may specify
the state that the stack must have before its execution and the result stack value
coming from its instructions. Inside the Wasm binary the blocks explicitly define
where they start and end (Line 25 and Line 28). By design, each block executes
independently and cannot execute or refer to outer block codes. This is guaranteed
by explicitly annotating the state of the stack before and after the block. Three
instructions handle the navigation between blocks: unconditional break, conditional
break (Line 19 and Line 24) and table break. Each break instruction can only
jump to one of its enclosing blocks. For example, in Listing 2.2, Line 19 forces the
execution to jump to the end of the first block that starts at Line 10 if the value
at the top of the stack is greater than zero.

12 CHAPTER 2. BACKGROUND & STATE OF THE ART

2.1.3 WebAssembly security

As we described, Wasm is deterministic and well-typed, follows a structured control
flow and explicitly separates its linear memory model, global variables and the
execution stack. This design is robust [27] and makes it easy for compilers and
engines to sandbox the execution of Wasm binaries. Following the specification of
Wasm for typing, memory, virtual stack and function calling, host environments
should provide protection against data corruption, code injection, and return-
oriented programming (ROP).

However, implementations in both browsers and standalone runtimes [7] are
vulnerable. Genkin et al. demonstrated that Wasm could be used to exfiltrate data
using cache timing-side channels [41]. Moreover, binaries itself can be vulnerable.
The work of Lehmann et al. [24] proved that C/C++ source code vulnerabilities can
propagate to Wasm such as overwriting constant data or manipulating the heap by
overflowing the stack. Even though these vulnerabilities need a specific standard
library implementation to be exploited, they make a call for better defenses for
Wasm. Recently, Stiévenart and colleagues demonstrate that C/C++ source code
vulnerabilities can be ported to Wasm [1]. Several proposals for extending Wasm
in the current roadmap could address some existing vulnerabilities. For example,
having multiple memories7 could incorporate more than one memory, stack and
global spaces, shrinking the attack surface. However, the implementation, adoption
and settlement of the proposals are far from being a reality in all browser vendors8.

2.2 Software Diversification

Software Diversification has been widely studied in the past decades. This section
discusses its state-of-the-art. Software diversification consists in synthesizing,
reusing, distributing, and executing different, functionally equivalent programs.
According to the survey by Baudry et al. [54], the motivation for software
diversification can be separated in five categories: reusability [81], software testing
[69], performance [65], fault tolerance [97] and security [93]. Our work contributes
to the latter two categories. In this section we discuss related works by highlighting
how they generate diversification and how they put it into practice.

There are two primary sources of software diversification: Natural Diversity and
Artificial Diversity[54]. This work contributes to the state of the art of Artificial
Diversity, which consists of software synthesis. This thesis is founded on the work
of Cohen in 1993 [93] as follows.

7https://github.com/WebAssembly/multi-memory/blob/main/proposals/multi-memory/Ove
rview.md

8https://webassembly.org/roadmap/

https://github.com/WebAssembly/multi-memory/blob/main/proposals/multi-memory/Overview.md
https://github.com/WebAssembly/multi-memory/blob/main/proposals/multi-memory/Overview.md
https://webassembly.org/roadmap/

2.2. SOFTWARE DIVERSIFICATION 13

2.2.1 Variants’ generation
Cohen et al. [93] proposed to generate artificial software diversification through
mutation strategies. A mutation strategy is a set of rules to define how a
specific component of software development should be changed to provide a
different yet functionally equivalent program. Cohen and colleagues proposed 10
concrete transformation strategies that can be applied at fine-grained levels. All
described strategies can be mixed together. They can be applied in any sequence
and recursively, providing a richer diversity environment. We summarize them,
complemented with the work of Baudry et al. [54] and the work of Jackson et al.
[63], in 5 strategies.

(S1) Equivalent instructions replacement Semantically equivalent code can replace
pieces of programs. This strategy replaces the original code with equivalent
arithmetic expressions or injects instructions that do not affect the computation
result. There are two main approaches for generating equivalent code: rewriting
rules and exhaustive searching. The replacement strategies are written by hand as
rewriting rules for the first one. A rewriting rule is a tuple composed of a piece of
code and a semantic equivalent replacement. For example, Cleemput et al. [64] and
Homescu et al. [62] insert NOP instructions to generate statically different variants.
In their works, the rewriting rule is defined as instr => (nop instr), meaning
that nop operation followed by the instruction is a valid replacement . On the other
hand, exhaustive searching samples all possible programs for a specific language.
In this topic, Jacob et al. [73] proposed the technique called superdiversification for
x86 binaries. The superdiversification strategy proposed by Jacob and colleagues
performs an exhaustive search of all programs that can be constructed from a
specific language grammar. If one of the generated programs is equivalent to
the original program, then it is reported as a variant. Similarly, Tsoupidi et al.
[20] introduced Diversity by Construction, a constraint-based compiler to generate
software diversity for MIPS32 architecture.

(S2) Instruction reordering This strategy reorders instructions or entire program
blocks if they are independent. The location of variable declarations might
change as well if compilers re-order them in the symbol tables. It prevents static
examination and analysis of parameters and alters memory locations. In this field,
Bhatkar et al. [88, 83] proposed the random permutation of the order of variables
and routines for ELF binaries.

(S3) Adding, changing, removing jumps and calls This strategy creates program
variants by adding, changing, or removing jumps and calls in the original program.
Cohen [93] mainly illustrated the case by inserting bogus jumps in programs. Pettis
and Hansen [95] proposed to split basic blocks and functions for the PA-RISC
architecture, inserting jumps between splits. Similarly, Crane et al. [53] de-inline
basic blocks of code as an LLVM pass. In their approach, each de-inlined code is
transformed into semantically equivalent functions that are randomly selected at

14 CHAPTER 2. BACKGROUND & STATE OF THE ART

runtime to replace the original code calculation. On the same topic, Bhatkar et
al. [83] extended their previous approach [88], replacing function calls by indirect
pointer calls in C source code, allowing post binary reordering of function calls.
Recently, Romano et al. [2] proposed an obfuscation technique for JavaScript in
which part of the code is replaced by calls to complementary Wasm function.

(S4) Program memory and stack randomization This strategy changes the layout
of programs in the host memory. Also, it can randomize how a program variant
operates its memory. The work of Bhatkar et al. [88, 83] propose to randomize
the base addresses of applications and the library memory regions in ELF binaries.
Tadesse Aga and Autin [35], and Lee et al. [8] propose a technique to randomize the
local stack organization for function calls using a custom LLVM compiler. Younan
et al. [79] propose to separate a conventional stack into multiple stacks where
each stack contains a particular class of data. On the same topic, Xu et al. [18]
transforms programs to reduce memory exposure time, improving the time needed
for frequent memory address randomization.

(S5) ISA randomization and simulation This strategy uses a key to cypher the
original program binary into another encoded binary. Once encoded, the program
can be decoded only once at the target client, or it can be interpreted in the
encoded form using a custom virtual machine implementation. This technique is
strong against attacks involving code inspection. Kc et al. [86], and Barrantes
et al. [89] proposed seminal works on instruction-set randomization to create a
unique mapping between artificial CPU instructions and real ones. On the same
topic, Chew and Song [90] target operating system randomization. They randomize
the interface between the operating system and the user applications. Couroussé et
al. [50] implement an assembly-like DSL to generate equivalent code at runtime in
order to increase protection against side-channel attacks. Their technique generates
a different program during execution using an interpreter for their DSL. Code
obfuscation [2] can be seen as a simplification of ISA randomization. The main
difference between encoding and obfuscating code is that the former requires the
final target to know the encoding key while the latter executes as is in any client.
Yet, both strategies are meant to tackle program analysis from potential attackers.

2.2.2 Variants’ equivalence
Equivalence checking between program variants is an essential component for any
program transformation task, from checking compiler optimizations [59] to the
artificial synthesis of programs discussed in this chapter. Equivalence checking
proves that two pieces of code or programs are semantically equivalent [32]. Cohen
[93] simplifies this checking by enunciating the following property: two programs
are equivalent if given identical input, they produce the identical output. We use
this same enunciation as the definition of functional equivalence along with this
dissertation. Equivalence checking in Software Diversification aims to preserve
the original functionality for programs while changing observable behaviors. For

2.2. SOFTWARE DIVERSIFICATION 15

example, two programs can be statically different or have different execution times
and provide the same computation.

The equivalence property is often guaranteed by construction. For example, in
the case illustrated in S1 for Cleemput et al. [64] and Homescu et al. [62], their
transformation strategies are designed to generate semantically equivalent program
variants. However, this process is prone to developer errors, and further validation
is needed. For example, the test suite of the original program can be used to check
the variant. If the test suite passes for the program variant [25], then this variant
can be considered equivalent to the original. However, this technique is limited due
to the need for a preexisting test suite. When the test suite does not exist, another
technique is needed to check for equivalence.

If there is no test suite or the technique does not inherently implement the
equivalence property, the previously mentioned works use theorem solvers (SMT
solvers) [74] to prove equivalence. For SMT solvers, the main idea is to turn
the two code variants into mathematical formulas. The SMT solver checks for
counter-examples. When the SMT solver finds a counter-example, there exists an
input for which the two mathematical formulas return a different output. The
main limitation of this technique is that all algorithms cannot be translated to a
mathematical formula, for example, loops. Yet, this technique tends to be the most
used for no-branching-programs checking like basic block and peephole replacements
[49].

Another approach to check equivalence between two programs similar to using
SMT solvers is by using fuzzers [43]. Fuzzers randomly generate inputs that
provide different observable behavior. If two inputs provide a different output
in the variant, the variant and the original program are not equivalent. The main
limitation for fuzzers is that the process is remarkably time-expensive and requires
the introduction of oracles by hand.

2.2.3 Usages of Software Diversity
After program variants are generated, they can be used in two main scenarios:
Randomization or Multivariant Execution (MVE) [63]. In Figure 2.2a and
Figure 2.2b we illustrate both scenarios.

(U1) Randomization: In the context of our work Randomization refers to the
ability of a program to be served as different variants to different clients. In
the scenario of Figure 2.2a, a program is selected from the collection of variants
(program’s variant pool), and at each deployment, it is assigned to a random
client. Jackson et al. [63] compare the variant’s pool in Randomization with a herd
immunity, since vulnerable binaries can affect only part of the client’s community.

El-Khalil and colleagues [84] propose to use a custom compiler to generate
different binaries out of the compilation process. El-Khalil and colleagues modify a
version of GCC 4.1 to separate a conventional stack into several component parts,

16 CHAPTER 2. BACKGROUND & STATE OF THE ART

Program
variants

pool

Deployment

Randomization

(a) Randomization scenario. Given a
pool of program variants, one variant is
deployed per
host. Each deployment randomly selects
which variant is assigned to each host.
The same program variant is executed
in the host at every program invocation
between deployments.

Multivariant
binary

Deployment

Multivariant Execution
(MVE)

(b) Multivariant
Execution scenario. Given a pool of
program variants, a sample of the pool
is packaged in a multivariant binary that
is deployed. Each deployment randomly
selects which multivariant binary is
assigned to each host. Finally, a
variant from the multivariant binary is
randomly executed at runtime in the
host.

Figure 2.2: Software Diversification usages.

called multistacks. On the same topic, Aga and colleagues [35] propose to generate
program variants by randomizing its data layout in memory. Their approach makes
each variant to operate the same data in memory with different memory offsets.
The Polyverse company9 materializes randomization at the commercial level in real
life. They deliver a unique Linux distribution compilation for each of its clients by
scrambling the Linux packages at the source code level.

Virtual machines and operating systems can be also randomized. On this topic,
Kc et al. [86], create a unique mapping between artificial CPU instructions and real
ones. Their approach makes possible the assignment of different variants to specific
target clients. Similarly, Xu et al. [18] recompile the Linux Kernel to reduce the

9https://polyverse.com/

https://polyverse.com/

2.3. OPEN CHALLENGES 17

exposure time of persistent memory objects, increasing the frequency of address
randomization.

(U2) Multivariant Execution (MVE): Multiple program variants are composed in
one single binary (multivariant binary) [80]. Each multivariant binary is randomly
deployed to a client. Once in the client, the multivariant binary executes its
embedded program variants at runtime. Figure 2.2b illustrates this scenario.

The execution of the embedded variants can be either in parallel to check for
inconsistencies or a single program to randomize execution paths [88]. Bruschi et
al. [78] extended the idea of executing two variants in parallel with not-overlapping
and randomized memory layouts. Simultaneously, Salamat et al. [76] modified
a standard library that generates 32-bit Intel variants where the stack grows in
the opposite direction, checking for memory inconsistencies. Notably, Davi et al.
proposed Isomeron [52], an approach for execution-path randomization. Isomeron
simultaneously loads the original program and a variant. While the program is
running, Isomeron continuously flips a coin to decide which copy of the program
should be executed next at the level of function calls. The previously mentioned
works showed the benefits of exploiting the limit case of executing only two variants
in a multivariant environment. Agosta et al. [56] and Crane et al. [53] used more
than two generated programs in the multivariant composition, randomizing software
control flow at runtime.

Both scenarios have demonstrated to harden security by tackling known
vulnerabilities such as (JIT)ROP attacks [66] and power side-channels [67].
Moreover, Artificial Software Diversification is a preemptive technique for yet
unknown vulnerabilities [63]. Our work contributes to both usage scenarios for
Wasm.

2.3 Open challenges

In Table 2.1 we list the related work on Artificial Software Diversification discussed
along with this chapter. The first column in the table correspond to the author
names and the references to their work, followed by one column for each strategy
and usage (S1, S2, S3, S4, S5, U1 and U2). The last column of the table summarizes
the technical contribution and the reach of the referred work. Each cell in the table
contains a checkmark if the strategy or the usage of the work match the previously
mentioned classifications. The rows are sorted by the year of the work in ascending
order. In the following text, we enumerate the open challenges we have found in
the literature research:

1. Software monoculture: The same Wasm code is executed in millions of clients
devices through web browser. In addition, Wasm evolves to support edge-
cloud computing platforms in backend scenarios, i.e., replicating the same
binary along with all computing nodes in a worldwide scale. Therefore,

18 CHAPTER 2. BACKGROUND & STATE OF THE ART

potential vulnerabilities are spread, highlighting a monoculture phenomenon
[3].

2. Lack of Software Diversification for Wasm: Software Diversification
has demonstrated to provide protection for known and yet-unknown
vulnerabilities. However, only one software diversity approach has been
applied to the context of Wasm [2]. Moreover, Wasm is a novel technology
and, the adoption of defenses is still under development [7, 10] and has a
low pace, making software diversification a possible preemptive technique.
Besides, the preexisting works based on the LLVM pipeline cannot be
extended to Wasm because they contribute to LLVM versions released before
the inclusion of Wasm as an architecture.

3. Lack of research on MVE for Wasm: Wasm has a growing adoption for Edge
platforms. However, MVE in a distributed setting like the Edge has been
less researched. Only Voulimeneas et al. [5] recently proposed a multivariant
execution system by parallelizing the execution of the variants in different
machines for the sake of efficiency.

Conclusions
In this chapter, we presented the background on the Wasm language, including its
security issues and related work. This chapter aims to settle down the foundation to
study automatic diversification for Wasm. We highlighted that Wasm has been less
researched in the field of Artificial Software Diversification. On the other hand,
current available implementations for Software Diversification cannot be directly
ported to Wasm. The current limitations on security and the lack of software
diversity approaches for Wasm motivate our work. We place our contributions in
the field of artificial diversity. In Chapter 3 we describe the technical details that
lead our contributions. Besides, the impact of our contributions is evaluated by
following the methodology described in Chapter 4.

2.3. OPEN CHALLENGES 19

Authors S1 S2 S3 S4 S5 U1 U2 Main technical contribution

Pettis and Hansen [95] Custom Pascal compiler for PA-RISC
architecture

Chew and Song [90] Linux Kernel recompilation.

Kc et al. [86] Linux Kernel recompilation.

Barrantes et al. [89] x86 to x86 transformations using
Valgrind

Bhatkar et al. [88] ELF binary transformations

El-Khalil and Keromytis [84] custom GCC compiler for x86
architecture

Bhatkar et al. [83] C/C++ source to
source transformations and ELF binary
transformations

Younan et al. [79] custom GCC compiler

Bruschi et al. [78] ELF binary transformations.

Salamat et al. [76] Custom GNU compiler

Jacob et al. [73] x86 to x86 transformations

Salamat et al. [70] x86 to x86 transformations

Amarilli et al. [67] Polymorphic code generator for ARM
architecture

Jackson [63] LLVM compiler, only backend for x86
architecture

Cleemput et al. [84] x86 to x86 transformations

Homescu et al. [62] LLVM 3.1.0†

Crane et al. [53] LLVM, only backend for x86
architecture

Davi et al. [52] Windows DLL instrumentation

Couroussé et al. [50] Custom GCC compiler targeting
microcontrollers

Lu et al. [37] GNU assembler for Linux kernel

Belleville et al. [42] Only C language frontend, LLVM 3.8.0†

Aga et al. [35] Data layout randomization, LLVM 3.9†

Österlund et al. [30] Linux Kernel recompilation.

Xu et al. [18] Custom kernel module in Linux OS

Lee et al. [8] LLVM 12.0.0 backend for x86

Romano et al. [2] JavaScript and Wasm intermixing
† Notice that LLVM only supports Wasm backend from release 7.1.0

Table 2.1: The first columns in the table correspond to the author names and the
references to their work, followed by one column for each strategy and usage (S1,
S2, S3, S4, S5, U1 and U2). The last column of the table summarizes the technical
contribution and the reach of the referred work. Each cell in the table contains a
checkmark if the strategy or the usage of the work match the previously mentioned
classifications. The rows are sorted by the year of the work in ascending order.

03 AUTOMATIC DIVERSITY
FOR WASM

We aim to create artificial software diversity for Wasm by providing methods
and tools to make the process easier and feasible for developers and researchers.
According to our exhaustive literature review, no paper provides artificial software
diversification for WebAssembly. Therefore, we need to enunciate the engineering
foundation to implement the strategies defined in Section 2.2. Our implementations
are part of the contributions of this thesis. We provide two tools that complement
this work: CROW and MEWE. The former tool generates Wasm program variants
statically at compile time to provide randomization. The latter tool provides the
method to generate MVE binaries for WebAssembly. In this chapter, we describe
our technical contributions. In Section 3.1 we enunciate how the current state-
of-the-art leads us to contribute with Software Diversification through LLVM. We
follow by describing our tools and their main technical insights in Section 3.2 and
Section 3.3. In addition, we describe a new transformation strategy as part of our
contributions.

3.1 Global approach

The work of Hilbig et al. [11] in 2021 influences our design decisions. According
to their work, 70% of the Wasm binaries in the wild are created with LLVM-based
compilers. Therefore, we provide artificial software diversity for Wasm through
LLVM. Other solutions would have been to diversify at the source-code level or
the Wasm binary level. However, these facts would limit the applicability of our
work. Our approach is more general as diversification also will work for other LLVM
backends.

LLVM is a compound of three main components [85]. First, the frontend
(compilers such as clang and rustc) converts the program source code to LLVM
intermediate representation (LLVM IR). Second, optimization and transformation
processes improve the LLVM IR. Third and final, the backend component is in
charge of generating the target machine code. In Figure 3.1 we show how we use
the LLVM pipeline in our contributions, which are highlighted as dashed squares.

The global workflow in Figure 3.1 starts by receiving the source code. Then
the LLVM frontend transforms it into LLVM IR representation 1 . We alter the

20

3.2. CROW: CODE RANDOMIZATION OF WEBASSEMBLY 21

MEWE

CROW

Source
Code

LLVM
Frontend

LLVM
IR

Diversifier

LLVM
IR

LLVM
IR

Wasm

Multivariant
Wasm
Binary

... ...Wasm LLVM
backend

1

2
3

4

Wasm

Figure 3.1: Generic workflow to create Wasm program variants.

LLVM pipeline that compiles source code to Wasm by introducing a diversifier
component.

The diversifier generates LLVM IR variants from the output of the frontend 2 .
The LLVM IR variants are inputs for our customized Wasm backend. The diversifier
and the custom Wasm LLVM backend compose CROW, which creates Wasm
program variants out of a source code program 3 . In addition, an orthogonal
tool comes from the generation of LLVM IR variants at Step 2 . MEWE [13],
merges and creates multivariant binaries to provide MVE for Wasm 4 .

3.2 CROW: Code Randomization of WebAssembly

This section describes the red squared tooling in Figure 3.1 named CROW [14].
CROW is a tool tailored to create semantically equivalent Wasm variants from an
LLVM front-end output. Using a custom Wasm LLVM backend, it generates the
Wasm binary variants.

In Figure 3.2, we describe the workflow of CROW to create program variants.
The Diversifier in CROW is composed by two main processes, exploration and
combining. The exploration process operates at the instruction level for each
function in its input LLVM. For all LLVM instructions, CROW produces a
collection of functionally equivalent code replacements. In the combining stage,
CROW assembles the code replacements to generate different LLVM IR variants.
CROW generates the LLVM IR variants by traversing the power set of all possible

22 CHAPTER 3. AUTOMATIC DIVERSITY FOR WASM

combinations of code replacements. Finally, the custom Wasm LLVM backend
compiles the assembled LLVM IR variants into Wasm binaries. In the following
text, we describe our design decisions. All our implementation choices are based
on one premise: each design decision should increase the number of Wasm variants
that CROW creates.

CROW
Diversifier

Code Replacement

LLVM
 IR

Orig.
Instructions

Equivalent
Instructions

Orig.
Instructions

Equivalent
Instructions

LLVM
 Function

...... Exploration Combining

LLVM
 IR

LLVM
 IR Wasm LLVM

backend

Wasm

Wasm

...

Equivalent
Instructions

...

LLVM
Function

...

Figure 3.2: CROW components following the diagram in Figure 3.1. CROW takes
LLVM IR to generate functionally equivalent code replacements. Then, CROW
assembles program variants by combining them.

3.2.1 Exploration

The primary component of CROW’s exploration process is its code replacements
generation strategy. The diversifier implemented in CROW is based on the proposed
superdiversifier of Jacob et al. [73]. A superoptimizer focuses on searching for a
new program that is faster or smaller than the original code while preserving its
functionality. The concept of superoptimizing a program dates back to 1987, with
the seminal work of Massalin [96] which proposes an exhaustive exploration of the
solution space. The search space is defined by choosing a subset of the machine’s
instruction set and generating combinations of optimized programs, sorted by code
size in ascending order. If any of these programs is found to perform the same
function as the source program, the search halts. On the contrary, a superdiversifier
keeps all intermediate search results despite their performance.

We use the superdiversifier idea of Jacob and colleagues to implement CROW
because of two main reasons. First, the code replacements generated by
this technique outperform diversification strategies based on handwritten rules.
Concretely, we can control the quality of the generated codes. Besides, CROW
always generates equivalent programs because it is based on a solver to check for
equivalence. Second, there is a battle-tested superoptimizer for LLVM, Souper [45].
This latter makes it feasible the construction of a generic LLVM superdiversifier.

3.2. CROW: CODE RANDOMIZATION OF WEBASSEMBLY 23

We modify Souper to keep all possible solutions in their searching algorithm.
Souper builds a Data Flow Graph for each LLVM integer-returning instruction.
Then, for each Data Flow Graph, Souper exhaustively builds all possible expressions
from a subset of the LLVM IR language. Each syntactically correct expression
in the search space is semantically checked versus the original with a theorem
solver. Souper synthesizes the replacements in increasing size. Thus, the first
found equivalent transformation is the optimal replacement result of the searching.
CROW keeps more equivalent replacements during the searching by removing the
halting criteria. Instead the original halting conditions, CROW does not halt when
it finds the first replacement. CROW continues the search until a timeout is reached
or the replacements grow to a size larger that a predefined threshold.

Notice that the searching space increases exponentially with the size of the
LLVM IR language subset. Thus, we prevent Souper from synthesizing instructions
with no correspondence in the Wasm backend. This decision reduces the searching
space. For example, creating an expression having the freeze LLVM instructions
will increase the searching space for instruction without a Wasm’s opcode in the
end. Moreover, we disable the majority of the pruning strategies of Souper for the
sake of more program variants. For example, Souper prevents the generation of the
commutative operations during the searching. On the contrary, CROW still uses
such transformation as a strategy to generate program variants.

3.2.2 Constant inferring

One of the code transformation strategies of Souper does constant inferring. This
means that Souper infers pieces of code as a single constant assignment. In
particular, Souper focuses on variables that are used to control branches. By
extending Souper as a superdiversifier, we add this transformation strategy as a
new mutation strategy to the ones defined in Section 2.2.

After a constant inferring, the generated program is considerably different from
the original program, being suitable for diversification. Let us illustrate the case
with an example. The Babbage problem code in Listing 3.1 is composed of a
loop that stops when it discovers the smaller number that fits with the Babbage
condition in Line 4.

24 CHAPTER 3. AUTOMATIC DIVERSITY FOR WASM

Listing 3.1: Babbage problem.

1 int babbage() {
2 int current = 0,
3 square;
4 while ((square=current*current) %

↪→ 1000000 != 269696) {
5 current++;
6 }
7 printf ("The number is %d\n", current)

↪→ ;
8 return 0 ;
9 }

Listing 3.2: Constant inferring
transformation over the original
Babbage problem in Listing 3.1.
int babbage() {

int current = 25264;

printf ("The number is %d\n", current);
return 0 ;

}

In theory, this value can also be inferred by unrolling the loop the correct number
of times with the LLVM toolchain. However, standard LLVM tools cannot unroll
the while-loop because the loop count is too large. The original Souper deals with
this case, generating the program in Listing 3.2. It infers the value of current in
Line 2 such that the Babbage condition is reached. Therefore, the condition in the
loop will always be false. Then, the loop is dead code and is removed in the final
compilation. The new program in Listing 3.2 is remarkably smaller and faster than
the original code. Therefore, it offers differences both statically and at runtime1.

3.2.3 Removing subsequent optimizations for LLVM
During the implementation of CROW, we have the premise of removing all built-in
optimizations in the LLVM backend that could reverse Wasm variants. Therefore,
we modify the Wasm backend. We disable all optimizations in the Wasm backend
that could reverse the CROW transformations. In the following enumeration, we
list three concrete optimizations that we remove from the Wasm backend.2

Constant folding: this optimization calculates the operation over two (or
more) constants in compiling time, and replaces the original expression by its
constant result. For example, let us suppose a = 10 + 12 a subexpression to
be compiled, with the original optimization, the Wasm backend replaces it
by a = 22.

Expressions normalization: in this case, the comparison operations are
normalized to its complementary operation, e.g. a > b is always replaced
by b <= a.

Redundant operation removal: expressions such as the multiplication of
variables by a = b2n are replaced by shift left operations a = b << n.

1Notice that for the sake of illustration, we show both codes in C language, this process inside
CROW is performed directly in LLVM IR. Also, notice that the two programs in the example
follow the definition of functional equivalence discussed in Section 2.2.

2We only illustrate three of the removed optimization for the sake of simplicity.

3.3. MEWE: MULTI-VARIANT EXECUTION FOR WEBASSEMBLY 25

3.3 MEWE: Multi-variant Execution for WebAssembly

This section describes MEWE [13]. MEWE synthesizes diversified function
variants by using CROW. It then provides execution-path randomization in a
Multivariant Execution (MVE). The tool generates application-level multivariant
binaries without changing the operating system or Wasm runtime. MEWE creates
an MVE by intermixing functions for which CROW generates variants, as step 2
in Figure 3.1 shows. CROW generates each one of these variants with fine-grained
diversification at the instruction level, applying the majority of the strategies
discussed in Section 2.2 and constant inferring. MEWE adds a new mutation
strategy. It inlines function variants when appropriate, resulting in call stack
diversification at runtime.

In Figure 3.3 we zoom MEWE from the blue highlighted square in Figure 3.1.
MEWE takes the LLVM IR variants generated by CROW’s diversifier. It then
merges LLVM IR variants into a Wasm multivariant. In the figure, we highlight
the two components of MEWE, Multivariant Generation and the Mixer. In the
Multivariant Generation process, MEWE merges the LLVM IR variants created
by CROW and creates an LLVM multivariant binary. The merging of the
variants intermixes the calling of function variants, allowing the execution path
randomization.

The Mixer augments the LLVM multivariant binary with a random generator.
The random generator is needed to perform the execution-path randomization.
Also, The Mixer fixes the entrypoint in the multivariant binary. Finally, MEWE
generates a standalone multivariant Wasm binary using the same custom Wasm
LLVM backend from CROW. Once generated, the multivariant Wasm binary can
be deployed to any Wasm engine.

3.3.1 Multivariant generation
The key component of MEWE consists in combining the variants into a single
binary. The goal is to support execution-path randomization at runtime. The core
idea is to introduce one dispatcher function per original function with variants.
A dispatcher function is a synthetic function in charge of choosing a variant at
random when the original function is called. With the introduction of the dispatcher
function, MEWE turns the original call graph into a multivariant call graph, defined
as follows.

Definition 1. Multivariant Call Graph (MCG): A multivariant call graph is a call
graph 〈N, E〉 where the nodes in N represent all the functions in the binary and an
edge (f1, f2) ∈ E represents a possible invocation of f2 by f1 [98]. The nodes in N
have three possible types: a function present in the original program, a generated
function variant, or a dispatcher function.

In Figure 3.4, we show the original static call graph for an original program (top
of the figure), as well as the multivariant call graph generated with MEWE (bottom

26 CHAPTER 3. AUTOMATIC DIVERSITY FOR WASM

MEWE

LLVM IR

function1function1function1function1

Multivariant
Wasm Binary

Multivariant
Generation

LLVM IR

function1function1function1function1

...

Mixer

Wasm
backend

LLVM Multivariant
binary

function1function1function1function1

function1function1function1functionn

LLVM Multivariant
binary
function1function1function1function1

random
generator

entrypoint
tampering

CROW

Figure 3.3: Overview of MEWE workflow. It takes as input an LLVM binary.
It first generates a set of functionally equivalent variants for each function in
the binary using CROW. Then, MEWE generates an LLVM multivariant binary
composed of all the function variants. Finally, the Mixer includes the behavior
in charge of selecting a variant when a function is invoked. Finally, the MEWE
mixer composes the LLVM multivariant binary with a random number generation
library and tampers the original application entrypoint. The final process produces
a Wasm multivariant binary ready to be deployed.

of the figure). The gray nodes represent function variants, the green nodes function
dispatchers, and the yellow nodes are the original functions. The directed edges
represent the possible calls. The original program includes three functions. MEWE
generates 43 variants for the first function, none for the second, and three for the
third. MEWE introduces two dispatcher nodes for the first and third functions.
Each dispatcher is connected to the corresponding function variants to invoke one
variant randomly at runtime.

In Listing 3.3, we illustrate the LLVM construction for the function dispatcher
corresponding to the right most green node of Figure 3.4. It first calls the random
generator, which returns a value used to invoke a specific function variant. We
implement the dispatchers with a switch-case structure to avoid indirect calls that
can be susceptible to speculative execution-based attacks [7]. The choice of a switch-
case also avoids having multiple function definitions with the same signature, which
could increase the attack surface in case the function signature is vulnerable [10].

3.3. MEWE: MULTI-VARIANT EXECUTION FOR WEBASSEMBLY 27

Figure 3.4: Example of two static call graphs. At the top, the original call graph,
at the bottom, the multivariant call graph, which includes nodes that represent
function variants (in gray), dispatchers (in green), and original functions (in yellow).

This also allows MEWE to inline function variants inside the dispatcher instead
of defining them again. Here we trade security over performance since dispatcher
functions that perform indirect calls, instead of a switch-case, could improve the
performance of the dispatchers as indirect calls have constant time.

define internal i32 @foo(i32 %0) {
entry:

%1 = call i32 @discriminate(i32 3)
switch i32 %1, label %end [

i32 0, label %case_43_
i32 1, label %case_44_

]
case_43_:

%2 = call i32 @foo_43_(%0)
ret i32 %2

case_44_:
%3 = <body of foo_44_ inlined>
ret i32 %3

end:
%4 = call i32 @foo_original(%0)
ret i32 %4

}

Listing 3.3: Dispatcher function embedded in the multivariant binary of the original
function in the rightmost green node in Figure 3.4.

28 CHAPTER 3. AUTOMATIC DIVERSITY FOR WASM

3.3.2 The Mixer
MEWE has four specific objectives: link the LLVM multivariant binary, inject
a random generator, tamper the application’s entrypoint, and merge all these
components into a multivariant Wasm binary. We use the Rustc compiler3 to
orchestrate the mixing. For the random generator, we rely on WASI’s specification
[15] for the random behavior of the dispatchers. However, its exact implementation
is dependent on the platform on which the binary is deployed. The Mixer creates a
new entrypoint for the binary called entrypoint tampering. It wraps the dispatcher
for the entrypoint variants as a new function for the final Wasm binary and is
declared as the application entrypoint.

3.4 Accompanying Source Code

This thesis is accompanied by the source code of both contributions, CROW and
MEWE. The source code is accessible through the links:

1. CROW: https://github.com/KTH/slumps

2. Customized LLVM backend: https://github.com/Jacarte/llvm-project

3. MEWE: https://github.com/Jacarte/MEWE

Our software artifacts are licensed under the MIT License. The dependent
source codes, such as LLVM, are licensed under their original conditions.

Conclusions

This chapter discusses the technical details of the tools implemented for our main
contributions. We describe how CROW generates program variants for the sake
of software diversification. We propose a global architecture for a generic LLVM
superdiversifier We introduce a new mutation strategy that is a consequence of
retargeting Souper as a superdiversifier. Besides, we dissect MEWE and how it
creates an MVE system. In Chapter 4 we discuss the methodology we follow to
evaluate how CROW and MEWE create software diversification.

3https://doc.rust-lang.org/rustc/what-is-rustc.html

https://github.com/KTH/slumps
https://github.com/Jacarte/llvm-project
https://github.com/Jacarte/MEWE
https://doc.rust-lang.org/rustc/what-is-rustc.html

04 METHODOLOGY

In this chapter, we present our methodology to answer the research questions
enunciated in Section 1.3. We investigate three research questions. In the first
question, we aim to investigate the static differences between variants. We evaluate
the code properties that increase or diminish software diversification. Our second
research question focuses on comparing their behavior during their execution,
complementing our first research question. The generated variants should be
statically different, but also should provide different observable behaviors. The
final research question evaluates the feasibility of using the program variants in
security-sensitive environments. We evaluate our generated program variants in an
edge-cloud computing platform proposing a novel multivariant execution approach.

The main objective of this thesis is to study the feasibility of automatically
creating program variants out of preexisting program sources. To achieve this
objective, we use the empirical method by Runeson et al. [22], using the prototype
solutions discussed in Chapter 3 and evaluating them through quantitative analyses
in case studies. We follow an iterative and incremental approach on the selection of
programs for our corpora. To build our corpora, we find a representative and diverse
set of programs to generalize, even when it is unrealistic following an empirical
approach, as much as possible our results. We first enunciate the corpora we share
along this work to answer our research questions. Then, we establish the metrics
for each research question, set the configuration for the experiments, and describe
the protocol.

4.1 Corpora

Our experiments assess the impact of artificially created diversity. The first step
is to build a suitable corpus of programs’ seeds to generate the variants. Then,
we answer all our research questions with three corpora which follow two main
properties: 1) functionally diverse: the selection of the programs is not biased by
functionally fixed tasks, for example, the Rosetta contains programs that solve from
the Babbage problem to calculate Convex Hull; and 2) representative: our corpora
have 3021 programs that can be ported to Wasm, representing approximately 40%
of the unique Wasm binaries in the wild [11].

We build our three corpora in an escalating strategy based on the merging of
our previous publications. The first corpus is diverse and contains simple programs
in terms of code size, making them easy to manually analyze. The second corpus

29

is a project meant for security-sensitive applications. The third corpus is a QR
encoding decoding algorithm. In the following text, we describe the filtering and
description of each corpus.

1. Rosetta: We take programs from the Rosetta Code project1. This website
hosts a curated set of solutions for specific programming tasks in various
programming languages. It contains many tasks, from simple ones, such as
adding two numbers, to complex algorithms like a compiler lexer. We first
collect all C programs from the Rosetta Code, representing 989 programs as of
01/26/2020. We then apply several filters: the programs should successfully
compile and, they should not require user inputs for automatic execution, the
programs should terminate and should not result in non-deterministic results.
The result of the filtering is a corpus of 303 C programs. All programs include
a single function in terms of source code. These programs range from 7 to
150 lines of code.

2. Libsodium: This project is an encryption, decryption, signature, and
password hashing library implemented in 102 separated modules. The
modules have between 8 and 2703 lines of code per function. This project
is selected based on two main criteria: first, its importance for security-
related applications, and second, its suitability to collect the modules in
LLVM intermediate representation.

3. QrCode: This project is a QrCode and MicroQrCode generator written in
Rust. This project contains 2 modules having between 4 and 725 lines of code
per function. As Libsodium, we select this project due to its suitability for
collecting the modules in their LLVM representation. This project increases
the complexity of the previously selected projects due to its integration with
image generation.

In Table 4.1 we listed the corpus name, the language of the programs in the
corpus, the number of modules, the total number of functions, the range of lines of
code, and the original location of the corpus.

4.2 RQ1. To what extent can we artificially generate program
variants for WebAssembly?

This research question investigates whether we can artificially generate program
variants for Wasm. We use CROW to generate variants from an original program,
written in C/C++ in the case of the Rosetta corpus and LLVM bitcode modules in
the case of the Libsodium and QrCode. In Figure 4.1 we illustrate the workflow to

1http://www.rosettacode.org/wiki/Rosetta_Code
2 The concept of module does not apply for this corpus since each potential module has a

single function.

30

http://www.rosettacode.org/wiki/Rosetta_Code

Corpus Lang. No. modules No. functions LOC range Location

Rosetta C - 2 303 7 - 150 https://github.com
/KTH/slumps/tree/m
aster/benchmark_pro
grams/rossetta/val
id/no_input

Libsodium LLVM
IR +
Rust

102 869 8 - 2703 https://github.com
/jedisct1/libsodiu
m/tree/2b5f8f2b681
0121c2d9a8cc8a392e
01f4d3de433

QrCode LLVM
IR +
Rust

2 1849 4 - 725 https://github.com
/kennytm/qrcode-ru
st/commit/faa4397b
a7c5f441cb9a2b436c
1e84a0d52ae942

Total 3021

Table 4.1: Corpora description. The table is composed by the name of the corpus,
programming language of the programs in the corpus, the number of modules, the
number of functions, the lines of code range and the location of the corpus.

generate Wasm program variants. We pass each function of the corpora to CROW
as a program to diversify. To answer RQ1, we study the outcome of this pipeline,
the generated Wasm variants.

Metrics
To assess our approach’s ability to generate Wasm binaries that are statically
different, we compute the number of variants and the number of unique variants for
each original function of each corpus. On top, we define the aggregation of these
former two values to quantitatively evaluate RQ1 at the corpus level.

We start by defining what a program’s population is. This definition can be
applied in general to any collection of variants of the same program. All definitions
are based upon bytecodes and not the source code of the programs.

Definition 2. Program’s population M(P): Given a program P and its generated
variants vi, the program’s population is defined as:

M(P) = {vi where vi is a variant of P}

Notice that the program’s population includes the original program P.

Beyond the program’s population, we also want to compare how many program
variants are unique. The subset of unique programs in the program’s population

31

https://github.com/KTH/slumps/tree/master/benchmark_programs/rossetta/valid/no_input
https://github.com/KTH/slumps/tree/master/benchmark_programs/rossetta/valid/no_input
https://github.com/KTH/slumps/tree/master/benchmark_programs/rossetta/valid/no_input
https://github.com/KTH/slumps/tree/master/benchmark_programs/rossetta/valid/no_input
https://github.com/KTH/slumps/tree/master/benchmark_programs/rossetta/valid/no_input
https://github.com/jedisct1/libsodium/tree/2b5f8f2b6810121c2d9a8cc8a392e01f4d3de433
https://github.com/jedisct1/libsodium/tree/2b5f8f2b6810121c2d9a8cc8a392e01f4d3de433
https://github.com/jedisct1/libsodium/tree/2b5f8f2b6810121c2d9a8cc8a392e01f4d3de433
https://github.com/jedisct1/libsodium/tree/2b5f8f2b6810121c2d9a8cc8a392e01f4d3de433
https://github.com/jedisct1/libsodium/tree/2b5f8f2b6810121c2d9a8cc8a392e01f4d3de433
https://github.com/kennytm/qrcode-rust/commit/faa4397ba7c5f441cb9a2b436c1e84a0d52ae942
https://github.com/kennytm/qrcode-rust/commit/faa4397ba7c5f441cb9a2b436c1e84a0d52ae942
https://github.com/kennytm/qrcode-rust/commit/faa4397ba7c5f441cb9a2b436c1e84a0d52ae942
https://github.com/kennytm/qrcode-rust/commit/faa4397ba7c5f441cb9a2b436c1e84a0d52ae942
https://github.com/kennytm/qrcode-rust/commit/faa4397ba7c5f441cb9a2b436c1e84a0d52ae942

Corpus

Corpus's population

Program1's population

Program2's population

Corpus's unique population

Program1's unique
 population

Program2's unique
 populationCROW

Wasm
variant n

Wasm
variant 2

CROW

Wasm
variant 1

program1

program2

Wasm
variant n

Wasm
variant 1

Figure 4.1: The program variants generation for RQ1.

hints how the variants are different between them and not only against the original
program. For example, imagine a program P with two program variants V1 and V2,
the program population is composed by {P, V1 and V2}, where V1 is different from
P , and V2 is different from P . V1 is either equal or different from V2, the program’s
population still be the same. If V1 and V2 are equal, then only one unique variant
is generated,

Definition 3. Program’s unique population U(P): Given a program P and its
program’s population M(P), the program’s unique population is defined as.

U(P) = {v ∈ M(P)}

such that ∀vi, vj ∈ U(P), vi 6= vj ⇒ md5sum(vi) 6= md5sum(vj). Md5sum(v) is
the md5 hash calculated over the bytecode stream of the program file v. Notice
that the original program P is included in U(P).

32

Metric 1. Program’s population size S(P): Given a program P and its program’s
population M(P) according to Definition 2, the program’s population size is defined
as.

S(P) = |M(P)|

Metric 2. Program’s unique population size US(P): Given a program P and its
program’s unique population U(P) according to Definition 3, the program’s unique
population size is defined as.

US(P) = |U(P)|

Metric 3. Corpus population size CS(C): Given a program’s corpus C, the corpus
population size is defined as the sum of all program’s population sizes over the
corpus C:

CS(C) = ΣS(P) ∀ P ∈ C

Metric 4. Corpus unique population size UCS(C): Given a program’s corpus C,
the corpus unique population size is defined as the sum of all program’s unique
population sizes over the corpus C :

UCS(C) = ΣUS(P) ∀ P ∈ C

Protocol
To generate program variants, we synthesize programs with an enumerative
strategy, checking each synthesis for equivalence modulo input [38] against the
original program, as it is described in Section 3.2. For obvious reasons, this space is
nearly impossible to explore in a reasonable time as soon as the limit of instructions
increases. Therefore, we use two parameters to control the size of the search space
and hence the time required to traverse it. On the one hand, one can limit the size
of the variants. On the other hand, one can limit the set of instructions used for
the synthesis. In our experiments for RQ1, we use all instructions in the CROW
diversifier synthesis.

The former parameter allows us to find a trade-off between the number of
variants that are synthesized and the time taken to produce them. For the current
evaluation, given the size of the corpus and the properties of its programs, we set
the exploration time to 1 hour maximum per function for Rosetta. In the cases
of Libsodium and QrCode, we set the timeout to 5 minutes per function. The
decision behind the usage of lower timeout for Libsodium and QrCode is motivated
by the properties listed in Table 4.1. The latter two corpora are remarkably larger
regarding the number of instructions and functions.

We pass each of the 303 + 869 + 1849 functions in the corpora to CROW, as
Figure 4.1 illustrates, to synthesize program variants. We calculate the Corpus

33

population size (Metric 3) and Corpus unique population size (Metric 4) for each
corpus and conclude by answering RQ1.

4.3 RQ2. To what extent are the generated variants dynamically
different?

 Programs' population Dynamic analysis

program CROW

Wasm
variant n

Wasm
variant 2

Wasm
variant 1

Execution
trace n

Execute

Execution
trace 2

Execute

Execution
trace 1

Execute

Execution
time n

Execution
time 2

Execution
time 1

Figure 4.2: Dynamic analysis for RQ2.

In this second research question, we investigate to what extent the artificially
created variants are dynamically different between them and in comparison to
the original program. To conduct this research question, we could separate our
experiments into two fields as Figure 4.2 illustrates: static analysis and dynamic
analysis. The static analysis focuses on the appreciated differences among the
program variants, as well as between the variants and the original program. We
perform the static analysis in answering RQ1 in Section 4.2. With RQ2, we focus
on the last category, the dynamic analysis of the generated variants. This decision
is supported because dynamic analysis complements RQ1 and, it is essential to
provide a full understanding of diversification. We use the original functions from

34

the Rosetta corpus described in Section 4.1 and their variants generated to answer
RQ1. We use only Rosetta to answer RQ2 because this corpus is composed of
simple programs that can be executed directly without user interaction, i.e., we
only need to call the interpreter passing the Wasm binary to it. To dynamically
compare programs and their variants, we execute each program on each programs’
population to collect and execution times. We define execution trace and execution
time in the following section.

Metrics
We compare the execution traces of two any programs of the same population with
a global alignment metric. We propose a global alignment approach using Dynamic
Time Warping (DTW). Dynamic Time Warping [99] computes the global alignment
between two sequences. It returns a value capturing the cost of this alignment,
which is a distance metric. The larger the DTW distance, the more different the
two sequences are. DTW has been used for comparing traces in different domains.
For software, De A. Maia et al. [72] proposed to identify similarity between programs
from execution traces. As we discussed in Section 2.1, a theoretical Wasm engine
perform push and pop operations when the program instructions are executed.
Therefore, in our experiments, we define the execution traces as the sequence of
the stack operations during the execution of the Wasm program. In the following
text, we define the TraceDiff metric.

Metric 5. TraceDiff : Given two programs P and P’ from the same program’s
population, TraceDiff (P,P’), computes the DTW distance collected during their
execution.
A TraceDiff of 0 means that both traces are identical. The higher the value, the
more different the traces.

Moreover, we use the execution-time distribution of the programs in the
population to complement the answer to RQ2. For each program pair in the
programs’ population, we compare their execution-time distributions. We define
the execution time as follows:

Metric 6. Execution time: Given a Wasm program P, the execution time is the
time spent to execute the binary.

Protocol
To compare program and variants behavior during runtime, we analyze all the
unique program variants generated to answer RQ1 in a pairwise comparison using
the value of aligning their execution traces (Metric 5). We use SWAM2 to execute
each program and variant to collect the stack operation traces. SWAM is a Wasm

2https://github.com/satabin/swam

35

https://github.com/satabin/swam

interpreter that provides functionalities to capture the dynamic information of
Wasm program executions, including the virtual stack operations.

Furthermore, we collect the execution time, Metric 6, for all programs and their
variants. We compare the collected execution-time distributions between programs
using a Mann-Withney U test [101] in a pairwise strategy.

4.4 RQ3. To what extent do the artificial variants exhibit different
execution times on edge-cloud platforms?

To answer RQ3, we use the variants generated for the programs of Libsodium and
QrCode corpora, we take 2+5 programs interconnecting the LLVM bitcode modules
(mentioned in Table 4.1). We illustrate the protocol to answer RQ3 in Figure 4.3
starting from the creation of the programs’ population.

Programs' population

Multivariant creation

 Execution time

analysis

program

CROW

Original
binary

Wasm
variant n

Wasm
variant 2

Wasm
variant 1

Multivariant
binary

Cloud execution
time

Execute

Cloud execution
time

Execute

Figure 4.3: Multivariant binary creation and workflow for RQ3 answering.

In RQ3, we study whether the created variants can be used in real-
world applications and what properties offer the composition of the variants as
multivariant binaries. We build multivariant binaries (according to Definition 1),
and we deploy and execute them at the Edge. The usage of edge-cloud computing
platforms to answer RQ3 is motivated by two reasons. First, it is an emerging
technology. Using Wasm as an intermediate layer is better in terms of startup
and memory usage, than containerization or virtualization [23, 39]. This has
encouraged edge computing platforms like Cloudflare and Fastly to use Wasm to
deploy client applications in a modular and sandboxed manner [36, 40]. Second,

36

edge-cloud computing platforms are shown to not be completely secure [7] and
multivariant execution offers a preemptive technique against predictable behaviors
such as execution time.

Metrics
To answer RQ3, we build multivariant Wasm binaries (see Definition 1) meant
to provide execution path randomization. We use the execution time of the
multivariant binaries to answer RQ3. We use the same metric defined in Metric 6
for the execution time of multivariant binaries.

Protocol
We answer RQ3 by analyzing real-world scenarios on the Edge. Edge applications
are designed to be deployed as isolated HTTP services, having one single
responsibility that is executed at every HTTP request. This development model
is known as serverless computing, or function-as-a-service [21, 7]. We deploy and
execute the multivariant binaries as end-to-end HTTP services on the Edge, and
we collect their execution times. To remove the natural jitter in the network, the
execution times are measured at the backend space, i.e., we collect the execution
times inside the Edge node and not from the client computer. Therefore, we
instrument the binaries to return the execution time as an HTTP header.

We do the collection of the execution times twice, for the original program and
its multivariant binary. We deploy and execute the original and the multivariant
binaries on 64 edge nodes located around the world. In Figure 4.4 we illustrate the
world wide location of the edges nodes.

We collect 100k execution times for each binary, both the original and
multivariant binaries. The number of execution time samples is motivated by the
seminal work of Morgan et al. [51]. We perform a Mann-Withney U test [101] to
compare both execution-time distributions. If the P-value is lower than 0.05, the
two compared distributions are different.

Conclusions

This chapter presents the methodology we follow to answer our three research
questions. We first describe and propose the corpora of programs used in this
work. We propose to measure the ability of our approach to generate variants out
of 3021 functions of our corpora. Then, we suggest using the generated variants
to study to what extent they offer different observable behavior through dynamic
analysis. We propose a protocol to study the impact of the composition variants in
a multivariant binary deployed at the Edge. Besides, we enumerate and enunciate
the properties and metrics that might lead us to answer the impact of automatic
diversification for Wasm programs. In the next chapter, we present and discuss the
results obtained with this methodology.

37

Figure 4.4: Screenshot taken from the Fastly Inc. platform used in our experiments
for RQ3. Blue and darker blue dots represent the edge nodes used in our
experiments.

38

05 RESULTS

In this chapter, we sum up the results of the research of this thesis. We illustrate
the key insights and challenges faced in answering each research question. To obtain
our results, we followed the methodology formulated in Chapter 4.

5.1 RQ1. To what extent can we artificially generate program
variants for WebAssembly?

As we describe in Section 4.2, our first research question aims to answer how to
artificially generate Wasm program variants. This section is organized as follows.
First we present the general results calculating the Corpus population size (Metric 3)
and Corpus unique population size (Metric 4) for each corpus. Second, we discuss
the challenges and limitations in program variants generation. Finally, we illustrate
the most common code transformations performed by our approach and answer
RQ1.

5.1.1 Program’s population
We summarize the results in Table 5.1. The table illustrates the corpus name, the
number of functions to diversify, the number of successfully diversified functions
(functions with at least one artificially created variant), the cumulative number of
variants (Corpus population size) and the cumulative number of unique variants
(Corpus unique population size).

We produce at least one unique program variant for 239/303 single function
programs for Rosetta with one hour for a diversification timeout. For the rest of
the programs (64/303), the timeout is reached before CROW can find any valid
variant. In the case of Libsodium and QrCode, we produce variants for 85/869
and 32/1849 functions respectively, with 5 minutes per function as timeout. The
rest of the functions resulted in timeout before finding function variants or produce
no variants. For all programs in all corpora, we achieve 356/3021 successfully
diversified functions, representing a 11.78% of the total. As the four and fifth
columns show, the number of artificially created variants and the number of unique
variants are larger than the original number of functions by one order of magnitude.
In the case of Rosetta, the corpus population size is close to one million of programs.
The remarkable difference between the total number of variants and the number

39

of unique variants (fourth and fifth columns) is mainly due to the replacements
combining process discussed in Section 3.2.

Corpus #Functions # Diversified # Variants # Unique Variants

Rosetta 303 239 809900 2678

Libsodium 869 85 4272 3805

QrCode 1849 32 6369 3314

3021 356 820541 9797

Table 5.1: General program’s populations statistics. The table is composed by the
name of the corpus, the number of functions, the number of successfully diversified
functions, the cumulative number of generated variants and the cumulative number
of unique variants.

5.1.2 Challenges for automatic diversification
We have observed a noticeable difference between the number of successfully
diversified functions versus the number of failed-to-diversify functions (third column
of Table 5.1). Our approach successfully diversified 239/303, 85/869 and 32/1849
of the original functions for Rosetta, Libsodium and QrCode respectively.

We have noticed a remarkable difference between the number of diversified
functions for each corpus, 809900 programs for Rosetta 4272 for Libsodium and
6369 for QrCode. The corpus population size for Rosetta is two orders of magnitude
larger compared to the other two corpora. The reason behind the large number of
variants for Rosetta is that, after a certain time, our approach starts to combine the
code replacements to generate new variants. However, looking at the fifth column,
the number of unique variants have the same order of magnitude for all corpora.
The variants generated out of the combination of several code replacements are not
necessarily unique. Some code replacements can dominate over others, generating
the same Wasm programs.

A low timeout offers more unique variants compared to the population size
despite the low number of diversified functions, like the Libsodium and QrCode
cases. This happens because, CROW first generates variants out of single code
replacements and then starts to combine them. Thus, more unique variants are
generated in the very first moments of the diversification process with CROW.

Apart from the timeout and the combination of variants phenomenon, we
manually analyze programs, searching for properties attempting to the generation of
program variants using CROW. As we previously mentioned in Section 3.2, constant
inferring is a new contribution of ours to the collection of Software Diversification
strategies enumerated in Section 2.2. We have observed that our approach searches

40

for a constant inferring for more than 45% of the instructions of each function
while constant values cannot be inferred in all cases. The main reason is that
memory operations are also included into the inferring while our tool is oblivious
to a memory model, making unsuccessful the constant replacement.

5.1.3 Properties for large diversification

We manually analyzed the programs to study the critical properties of programs
producing a high number of variants. This reveals one key factor that favors many
unique variants: the presence of bounded loops. In these cases, we synthesize
variants for the loops by replacing them with a constant, if the constant inferring
is successful. Every time a loop constant is inferred, the loop body is replaced by
a single instruction. This creates a new, statically different program. The number
of variants grows exponentially if the function contains nested loops for which we
can successfully infer constants.

A second key factor for synthesizing many variants relates to the presence of
arithmetic expressions. The synthesis engine used by our approach, effectively
replaces arithmetic instructions with equivalent instructions that lead to the same
result. For example, we generate unique variants by replacing multiplications with
additions or shift left instructions (Listing 5.1). Also, logical comparisons are
replaced, inverting the operation and the operands (Listing 5.2). Besides, our
implementation can use overflow and underflow of integers to produce variants
(Listing 5.3).

Listing 5.1: Diversification
through arithmetic
expression replacement.

local.get 0
i32.const 2
i32.mul

local.get 0
i32.const 1
i32.shl

Listing 5.2:
Diversification through
inversion of comparison
operations.

local.get 0
i32.const 10
i32.gt_s

i32.const 11
local.get 0
i32.le_s

Listing 5.3: Diversification
through overflow of integer
operands.

i32.const 2
i32.mul

i32.const 2
i32.mul
i32.const

-2147483647
i32.mul

At the Wasm level, we have not observed variants performing changes in
the control flow structure of the program (S3). Yet, this is not the case when
we manually analyze the machine code generated by V8 (as it was discussed in
Section 2.1). For the generated machine code, we have observed that, for different
variants, we are changing the number of jumps and its locations. The control flow
change strategy (S3) is correctly achieved as a consequence of latter compilation of
Wasm program variants.

41

Answer to RQ1. To what extent can we artificially generate program
variants for WebAssembly?

We can provide diversification for 11.78% of the programs in our corpora.
Constant inferring, complemented with the high presence of arithmetic
operations and bounded loops in the original program increased the number
of program variants. Our method based on the inclusion of a diversifier in
the LLVM pipeline proved to be feasible, by providing statically different
Wasm variants.

5.2 RQ2. To what extent are the generated variants dynamically
different?

Our second research question investigates the differences between program variants
at runtime. To answer RQ2, we execute each program/variant generated to answer
RQ1 for Rosetta corpus to collect their execution traces and execution times. For
each programs’ population we compare the stack operation traces (Metric 5) and
the execution-time distributions (Metric 6) for each program/variant pair.

This section is organized as follows. First, we analyze the programs’ populations
by comparing the traces for each pair of program/variant with TraceDiff of Metric 5.
The pairwise comparison will hint at the results at the population level. We analyze
not only the differences of a variant regarding its original program, we also compare
the variants against other variants. Second, we do the same pairwise strategy for
the execution-time distributions Metric 6, performing a Mann-Withney U test for
each pair of program/variant times distribution. Finally, we conclude and answer
RQ2.

5.2.1 Stack operation traces.
In Figure 5.1 we plot the distribution of all comparisons (in logarithmic scale) of
all pairs of program/variant in each programs’ population. All compared programs
are statically different. Each vertical group of blue dots represents all the pairwise
comparison of the traces (Metric 5) for a program of the Rosetta corpus for which
we generate variants. Each dot represents a comparison between two programs’
traces according to Metric 5. The programs are sorted by their number of variants
in descending order. For the sake of illustration, we filter out those programs for
which we generate only 2 unique variants.

We have observed that in the majority of the cases, the mean of the comparison
values is remarkably large. We analyze the length of the traces, and one reason
behind such large values of TraceDiff is that some variants result from constant
inferring. For example, if a loop is replaced by a constant, instead of several symbols

42

Figure 5.1: Pairwise comparison of programs’ population traces in logarithmic
scale. Each vertical group of blue dots represents a programs’ population. Each
dot represents a comparison between two program execution traces according to
Metric 5.

in the stack operation trace, we observe one. Consequently, the distance between
two program traces is significant.

In some cases, we have observed variants that are statically different for which
TraceDiff value is zero, i.e., they result in the same stack operation trace. We
identified two main reasons behind this phenomenon. First, the code transformation
that generates the variant targets a non-executed or dead code. Second, some
variants have two different instructions that trigger the same stack operations. For
example, the code replacements below illustrate the case.

(1) i32.lt_u
(2) i32.le_s

i32.lt_s
i32.lt_u

(3) i32.ne
(4) local.get 6

i32.lt_u
local.get 4

In the four cases, the operators are different (original in gray color and the
replacement in green color) leaving the same values for equal operands. The (1)
and (2) cases are comparison operations leaving the value 0 or 1 in the stack taking
into account the sign of their operands. In the third case, the replacement is less
restricted to the original operator, but in both cases, the codes leave the same value
in the stack. In the last case, both operands load a value of a local variable in the
stack, the index of the local variable is different but the value of the variable that
is appended to the trace is the same in both cases.

5.2.2 Execution times.
Even when two programs of the same population offer different execution traces,
their execution times can be similar (statistically speaking). In practice, the
execution traces of Wasm programs are not necessarily accessible, being not the

43

case with the execution time. For example, in our current experimentation we
need to use our own instrumentation of the execution engine to collect the stack
trace operations while the execution time is naturally accessible in any execution
environment. This mentioned reasoning enforces our comparison of the execution
times for the generated variants. Besides the execution times of programs can
be used by malicious clients to construct personalized attacks [51]. Therefore, by
measuring the execution times, we assess the diversification of observable behaviors
evaluated in real-world security scenarios.

For each program’s population, we compare the execution-time distributions,
Metric 6, of each pair of program/variant. Overall diversified programs, 169 out of
239 (71%) have at least one variant with a different execution-time distribution
than the original program (P-value < 0.01 in the Mann-Withney test). This
result shows that we effectively generate variants that yield significantly different
execution times.

By analyzing the data, we observe the following trends. First, if our tool infers
control-flows as constants in the original program, the variants execute faster than
the original, sometimes by one order of magnitude. On the other hand, if the
code is augmented with more instructions, the variants tend to run slower than the
original.

In both cases, we generate a variant with a different execution time than the
original. Both cases are good from a randomization perspective since this minimizes
the certainty a malicious user can have about the program’s behavior. Therefore,
a deeper analysis of how this phenomenon can be used to enforce security will be
discussed in answering RQ3.

To better illustrate the differences between executions times in the variants, we
dissect the execution-time distributions for one programs’ population of Rosetta.
The plots in Figure 5.2 show the execution-time distributions for the Hilbert
curve program and their variants. We illustrate time diversification with this
program because, we generate unique variants with all types of transformations
previously discussed in Section 5.1. In the plots along the X-axis, each vertical set
of points represents the distribution of 100000 execution times per program/variant.
The Y-axis represents the execution time value in milliseconds. The original
program is highlighted in green color: the distribution of 10000 execution times is
given on the left-most part of the plot, and its median execution time is represented
as a horizontal dashed line. The median execution time is represented as a blue dot
for each execution-time distribution, and the vertical gray lines represent the entire
distribution. The bolder gray line represents the 75% interquartile. The program
variants are sorted concerning the median execution time in descending order.

For the illustrated program, many diversified variants are optimizations (blue
dots below the green bar). The last third represents faster variants resulting
from code transformations that optimize the original program. Our tool provides
program variants in the whole spectrum of time executions, lower and faster variants
than the original program. The developer is in charge of deciding between taking
all variants or only the ones providing the same or less execution time for the

44

0.0

0.1

0.2

T
im

e
(s

)

Hilbert curve

Figure 5.2: Execution-time distributions for Hilber_curve program and its
variants. Baseline execution time mean is highlighted with the green horizontal
line.

sake of performance. Nevertheless, this result calls for using this timing spectrum
phenomenon to provide binaries with unpredictable execution times by combining
variants. The feasibility of this idea will be discussed in Section 5.3.

Answer to RQ2. To what extent are the generated variants dynamically
different?

We empirically demonstrate that our approach generates program variants
for which execution traces are different. We stress the importance of
complementing static and dynamic studies of programs variants. For
example, if two programs are statically different, that does not necessarily
mean different runtime behavior. There is at least one generated variant
for all executed programs that provides a different execution trace. We
generate variants that exhibit a significant diversity of execution times.
Concretely, for 169/239 (71%) of the diversified programs, at least one
variant has an execution-time distribution that is different compared to
the execution-time distribution of the original program. The result from
this study encourages the composition of the variants to provide a resilient
execution.

5.3 RQ3. To what extent do the artificial variants exhibit different
execution times on edge-cloud platforms?

Here we investigate the impact of the composition of program variants into
multivariant binaries. To answer this research question, we create multivariant
binaries from the program variants generated for Libsodium and QrCode corpora.
Then, we deploy the multivariant binaries into the Edge and collect their execution
times.

45

5.3.1 Execution times
We compare the execution-time distributions for each program for the original
and the multivariant binary. All distributions are measured on 100k executions
of the program along all Edge platform nodes. We have observed that the
distributions for multivariant binaries have a higher standard deviation of execution
time. A statistical comparison between the execution-time distributions confirms
the significance of this difference (P-value = 0.05 with a Mann-Withney U test).
This hints at the fact that the execution time for multivariant binaries is more
unpredictable than the time to execute the original binary.

In Figure 5.3, each subplot represents the quantile-quantile plot [100] of the two
distributions, original and multivariant binary. This kind of plots is used to compare
the shapes of distributions, providing a graphical comparison of location, scale, and
skewness for two distributions. The dashed line cutting the subplot represents the
case in which the two distributions are equal, i.e., for two equal distribution we
would have all blue dots over the dashed line. These plots reveal that the execution
times are different and are spread over a more extensive range of values than the
original binary. The standard deviation of the execution time values evidences
the latter, the original binaries have lower values while the multivariant binaries
have higher values up to 100 times the original. Besides, this can be graphically
appreciated in the plots when the blue dots cross the reference line from the bottom
of the dashed line to the top. This is evidence that execution time is less predictable
for multivariant binaries than original ones. This phenomenon is present because
the choice of function variants is randomized at each function invocation, and the
variants have different execution times due to the code transformations, i.e., some
variants execute more instructions than others.

Answer to RQ3. To what extent do the artificial variants exhibit different
execution times on edge-cloud platforms?

The execution-time distributions are significantly different between the
original and the multivariant binary. Furthermore, no specific variant can
be inferred from execution times gathered from the multivariant binary.
The distribution for the multivariant binary is different and even more
spread than the original one. Consequently, attacks relying on measuring
precise execution times [51] of a function are made a lot harder to conduct.

Conclusions

Our approach introduces static and dynamic, variants for up to 11.78% of the
programs in our three corpora, increasing the original count of unique programs by
3.21 times (9797/3021). We highlighted the importance of complementing static
and dynamic studies for programs diversification. Our results on the study of the

46

−2 0 2 4
−2

0

2

4

encrypt

−2 0 2 4
−2

0

2

4

decrypt

0 2 4

0

2

4

random

−2 0 2 4

−2

0

2

4

invert

−2 0 2 4

−2

0

2

4

bin2base64

−2 0 2 4

−2

0

2

4

qr str

−2 0 2 4

−2

0

2

4

qr image

Multivariant binary

Original binary

Figure 5.3: Execution-time distributions. Each subplot represents the quantile-
quantile plot of the two distributions, original and multivariant binary.

execution of the generated variants encourages the composition of the variants to
provide a resilient execution. Moreover, combining function variants in multivariant
binaries makes virtually impossible to predict which variant is executed for a
given query. We empirically demonstrate the feasibility and the application of
automatically generating Wasm program variants.

47

06 CONCLUSION AND
FUTURE WORK

Wasm has become a new technology for web browsers and standalone engines
such as the ones used in edge-cloud platforms. Wasm is designed with security
and sandboxing premises, yet, is still vulnerable. Besides, since it is a relatively
new technology, new vulnerabilities appear in the wild faster than the adoption of
patches and defenses. As a widely studied field, software diversification could be a
solution for known and yet-unknown vulnerabilities. Yet, there is no research on
this field for Wasm.

We propose an automatic approach to generate software diversification for Wasm
in this work. In addition, we provide complementary implementation for our
approaches, including a generic LLVM superdiversifier that potentially extends our
ideas to other programming languages. We empirically demonstrate the impact of
our approach by providing Randomization and Multivariant Execution (MVE) for
Wasm. For this, we provide two tools, CROW and MEWE. CROW completely
automatizes the process by using a superdiversifier. Besides, MEWE provides
execution path randomization for an MVE. This chapter is organized into two
sections. In Section 6.1, we summarize the main results we found by answering our
research questions enunciated in Chapter 1. Finally, Section 6.2 describes potential
future work that could extend this dissertation.

6.1 Summary of the results

We enunciate the three research questions in Chapter 1. With the first research
question, we investigate the feasibility of generating software diversification for
Wasm through the engineering of the LLVM pipeline. Besides, we highlight static
properties of the software diversification for Wasm generated by our approaches.
The generated variants are semantically equivalent to their respective original
programs. We study the properties of the generated variants at the level of
generated programs’ population. Thus, we identify the challenges that attempt
against the generation of unique program variants. Besides, we highlight the code
properties that offer numerous program variants. We answer our first research
question by creating near 1 million program variants for 3021 original programs.
With CROW, we create program variants for the 11.78% of the programs in our
corpora.

48

Complementing our first research question, we evaluate the dynamic properties
of the program variants generated to answer our first research question. We execute
each of the 303 original programs and its generated variants for the Rosetta. For
each execution, we collect their execution trace and their execution times. We
demonstrate that the Wasm variants generated by CROW offer remarkably different
execution traces. Similarly, the execution times are different between each program
and its variants. For the 71% of the diversified programs, at least one variant has
an execution-time distribution different from the original program’s execution time
distribution. Moreover, CROW generates both faster and slower variants enforcing
its usage for multivariant execution environments. In addition, we highlighted the
importance of dynamic analysis for software diversification.

Our last and third research question evaluates the impact of providing a
worldwide MVE for Wasm. We use MEWE to build multivariant binaries for the
program variants generated for Libsodium and QrCode corpora. We collect their
execution times by deploying the generated multivariant binaries in a production-
based edge-cloud platform. The addition of runtime path randomization to
multivariant binaries provides significant differences between the execution of the
original binary and the multivariant binary. The observed differences lead us to
conclude that no specific variant can be inferred from studying the execution time
of the multivariant binaries. Therefore, attacks that rely on measuring precise
execution times are more challenging to conduct.

Overall, these results show that our approaches can provide an automated
end-to-end solution for diversifying Wasm programs. Our approaches harden
observable properties commonly used to conduct attacks, such as static code
analysis, execution traces, and execution time. Therefore, our approaches harden
Wasm against unknown and yet-unknown vulnerabilities. Remarkably, we provide
a generic LLVM superdiversifier that potentially extends our ideas to other
programming languages.

6.2 Future work

There are many directions in which software diversification for Wasm could be
researched further. In this section, we describe three possible orthogonal lines of
work.

CROW and MEWE: Along with this dissertation, we highlighted challenges
and limitations. In all cases, we proposed solutions, yet, some of them could be
explored more in-depth. As we mentioned in Section 5.1 our solution provides
program variants but remarkably lower unique variants as a consequence of the
replacement combining process of CROW (Section 3.2). Techniques relying on
intelligent heuristics could help increase the generation of unique variants by early
discarding unsound combinations. On the other hand, constant inferring does not
always finish in a successful replacement due to the CROW’s obliviousness to some
computation models, such as memory operations. A solution could also be to use

49

heuristics to select which part of the code is more probable to become a constant
inferred assignment. On the other hand, MEWE introduces overhead during the
execution of the multivariant binaries. We identified the dispatcher calling the
function variants as the main reason. Each time a new variant executes, it involves
the introduction of a new function call through the dispatcher. Our variants are
artificially created. Thus, their bodies could be directly inlined in the dispatcher’s
body. This means that we can reduce the number of function calls by inlining the
variant. Nevertheless, a deeper study on the security consequences is needed.

Obfuscation, data augmentation and malware classification: Wasm
is extensively used for cryptocurrency mining. Sometimes the crypto-mining is
done without the consent of users, creating what is called crypto-malwares [11].
Antivirus software could detect them. However, a recent work [4] shows that
malware classifiers could be bypassed with the correct obfuscation technique. Our
diversification approach could be used to increase resilience in malware classifiers
by training them with augmented datasets on semantically equivalent malwares.
On the other hand, superoptimization can be used to build a canonical code
representation of a variant’s population. Therefore, if a classifier uses a canonical
representation, then malware obfuscation could be mitigated.

Better fuzzing: Fuzzers have become one of the most used techniques for
automated testing [43], and compilers are not the exception. Fastly uses this
technique to test their compiler, Lucet. Their fuzzing technique randomly creates
different Wasm binaries and passes them to the compiler. If the compiler crashes,
a bug report is created and fixed later. Our approaches created one binary that
crashed their compiler [16], after they had no bug for months. Therefore, our code
transformations outperform their code generation for testing. This highlighted the
need for better strategies for stressing compilers, interpreters, and validators for
Wasm. CROW and MEWE might be used for fuzzing, preventing vulnerabilities,
and providing better testing of systems.

50

BIBLIOGRAPHY

[1] Stiévenart,Q., De Roover,C., and Ghafari,M. (2022). Security risks of porting c
programs to webassembly. In Proceedings of the 37th ACM/SIGAPP Symposium
on Applied Computing, SAC ’22, page 1713–1722, New York, NY, USA.
Association for Computing Machinery.

[2] Romano,A., Lehmann,D., Pradel,M., and Wang,W. (2022). Wobfuscator:
Obfuscating javascript malware via opportunistic translation to webassembly.
In 2022 2022 IEEE Symposium on Security and Privacy (SP) (SP), pages 1101–
1116, Los Alamitos, CA, USA. IEEE Computer Society.

[3] Harrand,N. (2022). Software Diversity for Third-Party Dependencies. PhD
thesis, KTH, Software and Computer systems, SCS. QCR 20220413.

[4] Bhansali,S., Aris,A., Acar,A., Oz,H., and Uluagac,A. S. (2022). A first look at
code obfuscation for webassembly. In Proceedings of the 15th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, WiSec ’22, page 140–145,
New York, NY, USA. Association for Computing Machinery.

[5] Voulimeneas,A., Song,D., Larsen,P., Franz,M., and Volckaert,S. (2021). dmvx:
Secure and efficient multi-variant execution in a distributed setting. In
Proceedings of the 14th European Workshop on Systems Security, pages 41–47.

[6] Spies,B. and Mock,M. (2021). An evaluation of webassembly in non-web
environments. In 2021 XLVII Latin American Computing Conference (CLEI),
pages 1–10.

[7] Narayan,S., Disselkoen,C., Moghimi,D., Cauligi,S., Johnson,E., Gang,Z.,
Vahldiek-Oberwagner,A., Sahita,R., Shacham,H., Tullsen,D., et al. (2021).
Swivel: Hardening webassembly against spectre. In USENIX Security
Symposium.

[8] Lee,S., Kang,H., Jang,J., and Kang,B. B. (2021). Savior: Thwarting stack-based
memory safety violations by randomizing stack layout. IEEE Transactions on
Dependable and Secure Computing.

[9] Ko,Y., Rezk,T., and Serrano,M. (2021). Securejs compiler: Portable memory
isolation in javascript. In Proceedings of the 36th Annual ACM Symposium on
Applied Computing, SAC ’21, page 1265–1274, New York, NY, USA. Association
for Computing Machinery.

[10] Johnson,E., Thien,D., Alhessi,Y., Narayan,S.,
Brown,F., Lerner,S., McMullen,T., Savage,S., and Stefan,D. (2021). Sfi safety
for native-compiled wasm. NDSS. Internet Society.

[11] Hilbig,A., Lehmann,D., and Pradel,M. (2021). An empirical study of real-
world webassembly binaries: Security, languages, use cases. Proceedings of the
Web Conference 2021.

51

[12] Garcés,L., Martínez-Fernández,S., Oliveira,L., Valle,P., Ayala,C., Franch,X.,
and Nakagawa,E. Y. (2021). Three decades of software reference architectures:
A systematic mapping study. Journal of Systems and Software, 179:111004.

[13] Cabrera Arteaga,J., Laperdrix,P., Monperrus,M., and Baudry,B. (2021).
Multi-Variant Execution at the Edge. arXiv e-prints, page arXiv:2108.08125.

[14] Cabrera Arteaga,J., Floros,O., Vera Perez,O., Baudry,B., and Monperrus,M.
(2021). Crow: code diversification for webassembly. In MADWeb, NDSS 2021.

[15] (2021). Webassembly system interface. https://github.com/WebAssembly
/WASI.

[16] (2021). Stop a wasm compiler bug before it becomes a problem | fastly.
https://www.fastly.com/blog/defense-in-depth-stopping-a-wasm-c
ompiler-bug-before-it-became-a-problem.

[17] (2021). Global CDN Disruption. https://www.fastly.com/blog/summary-
of-june-8-outage.

[18] Xu,Y., Solihin,Y., and Shen,X. (2020). Merr: Improving security of persistent
memory objects via efficient memory exposure reduction and randomization. In
Proc. of ASPLOS, pages 987–1000.

[19] Wen,E. and Weber,G. (2020). Wasmachine: Bring iot up to speed with a
webassembly os. In 2020 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), pages 1–4. IEEE.

[20] Tsoupidi,R. M., Lozano,R. C., and Baudry,B. (2020). Constraint-based
software diversification for efficient mitigation of code-reuse attacks. ArXiv,
abs/2007.08955.

[21] Shillaker,S. and Pietzuch,P. (2020). Faasm: Lightweight isolation for efficient
stateful serverless computing. In USENIX Annual Technical Conference, pages
419–433.

[22] Runeson,P., Engström,E., and Storey,M.-A. (2020). The Design Science
Paradigm as a Frame for Empirical Software Engineering, pages 127–147.
Springer International Publishing, Cham.

[23] Mendki,P. (2020). Evaluating webassembly enabled serverless approach for
edge computing. In 2020 IEEE Cloud Summit, pages 161–166.

[24] Lehmann,D., Kinder,J., and Pradel,M. (2020). Everything old is new again:
Binary security of webassembly. In 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association.

52

https://github.com/WebAssembly/WASI
https://github.com/WebAssembly/WASI
https://www.fastly.com/blog/defense-in-depth-stopping-a-wasm-compiler-bug-before-it-became-a-problem
https://www.fastly.com/blog/defense-in-depth-stopping-a-wasm-compiler-bug-before-it-became-a-problem
https://www.fastly.com/blog/summary-of-june-8-outage
https://www.fastly.com/blog/summary-of-june-8-outage

[25] Harrand,N., Soto-Valero,C., Monperrus,M., and Baudry,B. (2020). Java
decompiler diversity and its application to meta-decompilation. Journal of
Systems and Software, 168:110645.

[26] Gadepalli,P. K., McBride,S., Peach,G., Cherkasova,L., and Parmer,G. (2020).
Sledge: A serverless-first, light-weight wasm runtime for the edge. In Proceedings
of the 21st International Middleware Conference, page 265–279.

[27] Chen,D. and W3C group (2020). WebAssembly documentation: Security.
https://webassembly.org/docs/security/. Accessed: 18 June 2020.

[28] Cabrera Arteaga,J., Donde,S., Gu,J., Floros,O., Satabin,L., Baudry,B., and
Monperrus,M. (2020). Superoptimization of WebAssembly Bytecode, page 36–40.
Association for Computing Machinery, New York, NY, USA.

[29] Bryant,D. (2020). Webassembly outside the browser: A new foundation for
pervasive computing. In Proc. of ICWE 2020, pages 9–12.

[30] Österlund,S., Koning,K., Olivier,P., Barbalace,A., Bos,H., and Giuffrida,C.
(2019). kmvx: Detecting kernel information leaks with multi-variant execution.
In ASPLOS.

[31] Gurdeep Singh,R. and Scholliers,C. (2019). Warduino: A dynamic
webassembly virtual machine for programming microcontrollers. In Proceedings
of the 16th ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes, MPLR 2019, pages 27–36, New York, NY, USA. ACM.

[32] Churchill,B., Padon,O., Sharma,R., and Aiken,A. (2019). Semantic program
alignment for equivalence checking. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2019,
page 1027–1040, New York, NY, USA. Association for Computing Machinery.

[33] Cabrera Arteaga,J., Monperrus,M., and Baudry,B. (2019). Scalable
comparison of javascript v8 bytecode traces. In Proceedings of the 11th
ACM SIGPLAN International Workshop on Virtual Machines and Intermediate
Languages, VMIL 2019, page 22–31, New York, NY, USA. Association for
Computing Machinery.

[34] Bytecode Alliance (2019). Bytecode Alliance. https://bytecodealliance
.org/.

[35] Aga,M. T. and Austin,T. (2019). Smokestack: thwarting dop attacks with
runtime stack layout randomization. In Proc. of CGO, pages 26–36.

[36] Varda,K. (2018). Webassembly on cloudflare workers. Technical report.

[37] Lu,K., Xu,M., Song,C., Kim,T., and Lee,W. (2018). Stopping memory
disclosures via diversification and replicated execution. IEEE Transactions on
Dependable and Secure Computing.

53

https://webassembly.org/docs/security/
https://bytecodealliance.org/
https://bytecodealliance.org/

[38] Li,J., Zhao,B., and Zhang,C. (2018). Fuzzing: a survey. Cybersecurity, 1(1):1–
13.

[39] Jacobsson,M. and Wåhslén,J. (2018). Virtual machine execution for wearables
based on webassembly. In EAI International Conference on Body Area Networks,
pages 381–389. Springer, Cham.

[40] Hickey,P. (2018). Announcing lucet: Fastly’s native webassembly compiler and
runtime. Technical report.

[41] Genkin,D., Pachmanov,L., Tromer,E., and Yarom,Y. (2018). Drive-by key-
extraction cache attacks from portable code. IACR Cryptol. ePrint Arch.,
2018:119.

[42] Belleville,N., Couroussé,D., Heydemann,K., and Charles,H.-P. (2018).
Automated software protection for the masses against side-channel attacks. ACM
Trans. Archit. Code Optim., 15(4).

[43] Zalewski,M. (2017). American fuzzy lop.

[44] WebAssembly Community Group (2017). WebAssembly Specification. https:
//webassembly.github.io/spec/core/syntax/index.html.

[45] Sasnauskas,R., Chen,Y., Collingbourne,P., Ketema,J., Lup,G., Taneja,J., and
Regehr,J. (2017). Souper: A Synthesizing Superoptimizer. arXiv preprint
1711.04422.

[46] Oracle (2017). JDK 9 Release Notes. Deprecation of Java Applets. https://ww
w.oracle.com/java/technologies/javase/9-deprecated-features.html.

[47] Haas,A., Rossberg,A., Schuff,D. L., Schuff,D. L., Titzer,B. L., Holman,M.,
Gohman,D., Wagner,L., Zakai,A., and Bastien,J. F. (2017). Bringing the web up
to speed with webassembly. PLDI.

[48] Van Es,N., Nicolay,J., Stievenart,Q., D’Hondt,T., and De Roover,C. (2016).
A performant scheme interpreter in asm.js. In Proceedings of the 31st Annual
ACM Symposium on Applied Computing, SAC ’16, page 1944–1951, New York,
NY, USA. Association for Computing Machinery.

[49] Phothilimthana,P. M., Thakur,A., Bodik,R., and Dhurjati,D. (2016). Scaling
up superoptimization. SIGARCH Comput. Archit. News, 44(2):297–310.

[50] Couroussé,D., Barry,T., Robisson,B., Jaillon,P., Potin,O., and Lanet,J.-L.
(2016). Runtime code polymorphism as a protection against side channel attacks.
In IFIP International Conference on Information Security Theory and Practice,
pages 136–152. Springer.

[51] Morgan,T. D. and Morgan,J. W. (2015). Web timing attacks made practical.
Black Hat.

54

https://webassembly.github.io/spec/core/syntax/index.html
https://webassembly.github.io/spec/core/syntax/index.html
https://www.oracle.com/java/technologies/javase/9-deprecated-features.html
https://www.oracle.com/java/technologies/javase/9-deprecated-features.html

[52] Davi,L., Liebchen,C., Sadeghi,A.-R., Snow,K. Z., and Monrose,F. (2015).
Isomeron: Code randomization resilient to (just-in-time) return-oriented
programming. In NDSS.

[53] Crane,S., Homescu,A., Brunthaler,S., Larsen,P., and Franz,M. (2015).
Thwarting cache side-channel attacks through dynamic software diversity. In
NDSS, pages 8–11.

[54] Baudry,B. and Monperrus,M. (2015). The multiple facets of software diversity:
Recent developments in year 2000 and beyond. ACM Comput. Surv., 48(1).

[55] Alon Zakai (2015). asm.js Speedups Everywhere. https://hacks.mozilla.
org/2015/03/asm-speedups-everywhere/.

[56] Agosta,G., Barenghi,A., Pelosi,G., and Scandale,M. (2015). The MEET
approach: Securing cryptographic embedded software against side channel
attacks. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 34(8):1320–1333.

[57] Zakai and colleagues (2014b). Emscripten. https://emscripten.org/.

[58] Zakai and colleagues (2014a). asm.js. http://asmjs.org/spec/latest/.

[59] Le,V., Afshari,M., and Su,Z. (2014). Compiler validation via equivalence
modulo inputs. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, page 216–226.

[60] Okhravi,H., Rabe,M., Mayberry,T., Leonard,W., Hobson,T., Bigelow,D., and
Streilein,W. (2013). Survey of cyber moving targets. Massachusetts Inst of
Technology Lexington Lincoln Lab, No. MIT/LL-TR-1166.

[61] Mulazzani,M., Reschl,P., Huber,M., Leithner,M., Schrittwieser,S., Weippl,E.,
and Wien,F. (2013). Fast and reliable browser identification with javascript
engine fingerprinting. In Web 2.0 Workshop on Security and Privacy (W2SP),
volume 5, page 4. Citeseer.

[62] Homescu,A., Neisius,S., Larsen,P., Brunthaler,S., and Franz,M. (2013). Profile-
guided automated software diversity. In Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages
1–11. IEEE.

[63] Jackson,T. (2012). On the Design, Implications, and Effects of Implementing
Software Diversity for Security. PhD thesis, University of California, Irvine.

[64] Cleemput,J. V., Coppens,B., and De Sutter,B. (2012). Compiler mitigations
for time attacks on modern x86 processors. ACM Trans. Archit. Code Optim.,
8(4).

55

https://hacks.mozilla.org/2015/03/asm-speedups-everywhere/
https://hacks.mozilla.org/2015/03/asm-speedups-everywhere/
https://emscripten.org/
http://asmjs.org/spec/latest/

[65] Sidiroglou-Douskos,S., Misailovic,S., Hoffmann,H., and Rinard,M. (2011).
Managing performance vs. accuracy trade-offs with loop perforation. In
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, ESEC/FSE ’11, page
124–134, New York, NY, USA. Association for Computing Machinery.

[66] Jackson,T., Salamat,B., Homescu,A., Manivannan,K., Wagner,G., Gal,A.,
Brunthaler,S., Wimmer,C., and Franz,M. (2011). Compiler-generated software
diversity. In Moving Target Defense, pages 77–98. Springer.

[67] Amarilli,A., Müller,S., Naccache,D., Page,D., Rauzy,P., and Tunstall,M.
(2011). Can code polymorphism limit information leakage? In IFIP International
Workshop on Information Security Theory and Practices, pages 1–21. Springer.

[68] Guha,A., Saftoiu,C., and Krishnamurthi,S. (2010). The essence of javascript.
In D’Hondt,T., editor, ECOOP 2010 – Object-Oriented Programming, pages 126–
150, Berlin, Heidelberg. Springer Berlin Heidelberg.

[69] Chen,T. Y., Kuo,F.-C., Merkel,R. G., and Tse,T. H. (2010). Adaptive random
testing: The art of test case diversity. J. Syst. Softw., 83:60–66.

[70] Salamat,B., Jackson,T., Gal,A., and Franz,M. (2009). Orchestra: intrusion
detection using parallel execution and monitoring of program variants in user-
space. In Proceedings of the 4th ACM European conference on Computer systems,
pages 33–46.

[71] Lala,J. H. and Schneider,F. B. (2009). It monoculture security risks and
defenses. IEEE Security & Privacy, 7(1):12–13.

[72] Maia,M. D. A., Sobreira,V., Paixão,K. R., Amo,R. A. D., and Silva,I. R.
(2008). Using a sequence alignment algorithm to identify specific and common
code from execution traces. In Proceedings of the 4th International Workshop on
Program Comprehension through Dynamic Analysis (PCODA, pages 6–10.

[73] Jacob,M., Jakubowski,M. H., Naldurg,P., Saw,C. W. N., and Venkatesan,R.
(2008). The superdiversifier: Peephole individualization for software protection.
In International Workshop on Security, pages 100–120. Springer.

[74] de Moura,L. and Bjørner,N. (2008). Z3: An efficient smt solver. In
Ramakrishnan,C. R. and Rehof,J., editors, Tools and Algorithms for the
Construction and Analysis of Systems, pages 337–340, Berlin, Heidelberg.
Springer Berlin Heidelberg.

[75] Yu,D., Chander,A., Islam,N., and Serikov,I. (2007). Javascript instrumentation
for browser security. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’07, page 237–249,
New York, NY, USA. Association for Computing Machinery.

56

[76] Salamat,B., Gal,A., Jackson,T., Manivannan,K., Wagner,G., and Franz,M.
(2007). Stopping buffer overflow attacks at run-time: Simultaneous multi-variant
program execution on a multicore processor. Technical report, Technical Report
07-13, School of Information and Computer Sciences, UCIrvine.

[77] Microsoft (2007). Silverlight. https://www.microsoft.com/silverlight/.

[78] Bruschi,D., Cavallaro,L., and Lanzi,A. (2007). Diversified process replicæ for
defeating memory error exploits. In Proc. of the Int. Performance, Computing,
and Communications Conference.

[79] Younan,Y., Pozza,D., Piessens,F., and Joosen,W. (2006). Extended protection
against stack smashing attacks without performance loss. In 2006 22nd Annual
Computer Security Applications Conference (ACSAC’06), pages 429–438.

[80] Cox,B., Evans,D., Filipi,A., Rowanhill,J., Hu,W., Davidson,J., Knight,J.,
Nguyen-Tuong,A., and Hiser,J. (2006). N-variant systems: a secretless framework
for security through diversity. In Proc. of USENIX Security Symposium,
USENIX-SS’06.

[81] Pohl,K., Böckle,G., and Van Der Linden,F. (2005). Software product line
engineering: foundations, principles, and techniques, volume 1. Springer.

[82] Grosskurth,A. and Godfrey,M. W. (2005). A reference architecture for web
browsers. In 21st IEEE International Conference on Software Maintenance
(ICSM’05), pages 661–664. IEEE.

[83] Bhatkar,S., Sekar,R., and DuVarney,D. C. (2005). Efficient techniques for
comprehensive protection from memory error exploits. In Proceedings of the
USENIX Security Symposium, pages 271–286.

[84] El-Khalil,R. and Keromytis,A. D. (2004). Hydan: Hiding information in
program binaries. In Lopez,J., Qing,S., and Okamoto,E., editors, Information
and Communications Security, pages 187–199, Berlin, Heidelberg. Springer
Berlin Heidelberg.

[85] LLVM (2003). The LLVM Compiler Infrastructure . https://llvm.org/.

[86] Kc,G. S., Keromytis,A. D., and Prevelakis,V. (2003). Countering code-
injection attacks with instruction-set randomization. In Proc. of CCS, pages
272–280.

[87] Goth,G. (2003). Addressing the monoculture. IEEE Security & Privacy,
1(06):8–10.

[88] Bhatkar,S., DuVarney,D. C., and Sekar,R. (2003). Address obfuscation: an
efficient approach to combat a board range of memory error exploits. In
Proceedings of the USENIX Security Symposium.

57

https://www.microsoft.com/silverlight/
https://llvm.org/

[89] Barrantes,E. G., Ackley,D. H., Forrest,S., Palmer,T. S., Stefanovic,D., and
Zovi,D. D. (2003). Randomized instruction set emulation to disrupt binary code
injection attacks. In Proc. CCS, pages 281–289.

[90] Chew,M. and Song,D. (2002). Mitigating buffer overflows by operating system
randomization. Technical Report CS-02-197, Carnegie Mellon University.

[91] Forrest,S., Somayaji,A., and Ackley,D. (1997). Building diverse computer
systems. In Proceedings. The Sixth Workshop on Hot Topics in Operating Systems
(Cat. No.97TB100133), pages 67–72.

[92] Microsoft (1996). Microsoft Announces ActiveX Technologies. https:
//web.archive.org/web/20090828024117/http://www.microsoft.com/
presspass/press/1996/mar96/activxpr.mspx.

[93] Cohen,F. B. (1993). Operating system protection through program evolution.
Computers & Security, 12(6):565–584.

[94] Tim Berners-Lee (1990). The WorldWideWeb browser. https://www.w3.org
/People/Berners-Lee/WorldWideWeb.html.

[95] Pettis,K. and Hansen,R. C. (1990). Profile guided code positioning. In
Proceedings of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation, PLDI ’90, page 16–27, New York, NY, USA.
Association for Computing Machinery.

[96] Henry,M. (1987). Superoptimizer: a look at the smallest program. ACM
SIGARCH Computer Architecture News, 15(5):122–126.

[97] Avizienis and Kelly (1984). Fault tolerance by design diversity: Concepts and
experiments. Computer, 17(8):67–80.

[98] Ryder,B. G. (1979). Constructing the call graph of a program. IEEE
Transactions on Software Engineering, (3):216–226.

[99] Needleman,S. B. and Wunsch,C. D. (1970). A general method applicable to the
search for similarities in the amino acid sequence of two proteins. 48(3):443–453.

[100] Gnanadesikan,R. and Wilk,M. B. (1968). Probability plotting methods for
the analysis of data. Biometrika, 55(1):1–17.

[101] Mann,H. B. and Whitney,D. R. (1947). On a test of whether one of two
random variables is stochastically larger than the other. Ann. Math. Statist.,
18(1):50–60.

[102] Cox,M. R. (1893). Cinderella: Three hundred and forty-five variants of
Cinderella, Catskin, and Cap o’Rushes. Number 31. Folk-lore Society.

https://web.archive.org/web/20090828024117/http://www.microsoft.com/presspass/press/1996/mar96/activxpr.mspx
https://web.archive.org/web/20090828024117/http://www.microsoft.com/presspass/press/1996/mar96/activxpr.mspx
https://web.archive.org/web/20090828024117/http://www.microsoft.com/presspass/press/1996/mar96/activxpr.mspx
https://www.w3.org/People/Berners-Lee/WorldWideWeb.html
https://www.w3.org/People/Berners-Lee/WorldWideWeb.html

Figure for thesis cover: The cover image was partially generated with the stable-
diffusion project https://github.com/CompVis/stable-diffusion. When we
pass our abstract to the model along with the WebAssembly logo, this image is
what we get.

59

https://github.com/CompVis/stable-diffusion

Part II

Included papers

60

SUPEROPTIMIZATION OF
WEBASSEMBLY BYTECODE

Javier Cabrera-Arteaga, Shrinish Donde, Jian Gu, Orestis Floros, Lucas
Satabin, Benoit Baudry, Martin Monperrus
Conference Companion of the 4th International Conference on Art, Science, and
Engineering of Programming (Programming 2021), MoreVMs

https://doi.org/10.1145/3397537.3397567

62

https://doi.org/10.1145/3397537.3397567

Superoptimization of WebAssembly Bytecode
Javier Cabrera Arteaga

KTH
Sweden

javierca@kth.se

Shrinish Donde
KTH

Sweden
shrinish@kth.se

Jian Gu
KTH

Sweden
jiagu@kth.se

Orestis Floros
KTH

Sweden
forestis@kth.se

Lucas Satabin
Mobimeo
Germany

lucas.satabin@gnieh.org

Benoit Baudry
KTH

Sweden
baudry@kth.se

Martin Monperrus
KTH

Sweden
martin.monperrus@csc.kth.se

ABSTRACT
Motivated by the fast adoption of WebAssembly, we propose the
first functional pipeline to support the superoptimization of Web-
Assembly bytecode. Our pipeline works over LLVM and Souper.
We evaluate our superoptimization pipeline with 12 programs from
the Rosetta code project. Our pipeline improves the code section
size of 8 out of 12 programs. We discuss the challenges faced in
superoptimization of WebAssembly with two case studies.

CCS CONCEPTS
• Software and its engineering→ Source code generation; Re-
targetable compilers; Software implementation planning.

KEYWORDS
superoptimization, webassembly, web, optimization, lllvm

ACM Reference Format:
Javier Cabrera Arteaga, Shrinish Donde, Jian Gu, Orestis Floros, Lucas Sa-
tabin, Benoit Baudry, and Martin Monperrus. 2020. Superoptimization of
WebAssembly Bytecode. In Companion Proceedings of the 4th International
Conference on the Art, Science, and Engineering of Programming (<Program-
ming’20> Companion), March 23–26, 2020, Porto, Portugal. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3397537.3397567

1 INTRODUCTION
After HTML, CSS, and JavaScript, WebAssembly (WASM) has be-
come the fourth standard language for web development [7]. This
new language has been designed to be fast, platform-independent,
and experiments have shown that WebAssembly can have an over-
head as low as 10% compared to native code [11]. Notably, WebAs-
sembly is developed as a collaboration between vendors and has
been supported in all major browsers since 2017.

The state-of-art compilation frameworks for WASM are Em-
scripten and LLVM [5, 6], they generate WASM bytecode from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7507-8/20/03. . . $15.00
https://doi.org/10.1145/3397537.3397567

high-level languages (e.g. C, C++, Rust). These frameworks can ap-
ply a sequence of optimization passes to deliver smaller and faster
binaries. In the web context, having smaller binaries is important,
because they are delivered to the clients over the network, hence
smaller binaries means reduced latency and page load time. Having
smaller WASM binaries to reduce the web experience is the core
motivation of this paper.

To reach this goal, we propose to use superoptimization. Super-
optimization consists of synthesizing code replacements in order
to further improve binaries, typically in a way better than the best
optimized output from standard compilers [4, 15]. Given a pro-
gram, superoptimization searches for alternate and semantically
equivalent programs with fewer instructions [12]. In this paper,
we consider the superoptimization problem stated as finding an
equivalent WebAssembly binary such that the size of the binary
code is reduced compared to the default one.

This paper presents a study on the feasibility of superoptimiza-
tion of WebAssembly bytecode. We have designed a pipeline for
WASM superoptimization, done by tailoring and integrating open-
source tools. Our work is evaluated by building a benchmark of 12
programs and applying superoptimization on them. The pipeline
achieves a median size reduction of 0.33% in the total number of
WASM instructions.

To summarize, our contributions are:
• The design and implementation of a functional pipeline for
the superoptimization of WASM.

• Original experimental results on superoptimizing 12 C pro-
grams from the Rosetta Code corpus.

2 BACKGROUND
2.1 WebAssembly
WebAssembly is a binary instruction format for a stack-based vir-
tual machine. As described in the WebAssembly Core Specification
[7], WebAssembly is a portable, low-level code format designed
for efficient execution and compact representation. WebAssembly
has been first announced publicly in 2015. Since 2017, it has been
implemented by four major web browsers (Chrome, Edge, Firefox,
and Safari). A paper by Haas et al. [11] formalizes the language and
its type system, and explains the design rationale.

The main goal of WebAssembly is to enable high performance
applications on the web. WebAssembly can run as a standalone VM
or in other environments such as Arduino [10]. It is independent
of any specific hardware or languages and can be compiled for

36

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal J. Cabrera Arteaga, S. Donde, J. Gu, O. Floros, L. Satabin, B. Baudry, and M. Monperrus

modern architectures or devices, from a wide variety of high-level
languages. In addition, WebAssembly introduces a memory-safe,
sand-boxed execution environment to prevent common security
issues, such as data corruption and security breaches.

Since version 8, the LLVM compiler framework supports the
WebAssembly compilation target by default [6]. This means that
all languages that have an LLVM front end can be directly com-
piled to WebAssembly. Binaryen [14], a compiler and toolchain
infrastructure library for WebAssembly, supports compilation to
WebAssembly as well. Once compiled, WASM programs can run
within a web browser or in a standalone runtime [10].

2.2 Superoptimization
Given an input program, code superoptimization focuses on search-
ing for a new program variant which is faster or smaller than the
original code, while preserving its correctness [2]. The concept of
superoptimizing a program dates back to 1987, with the seminal
work of Massalin [12] which proposes an exhaustive exploration of
the solution space. The search space is defined by choosing a subset
of the machine’s instruction set and generating combinations of
optimized programs, sorted by length in ascending order. If any
of these programs are found to perform the same function as the
source program, the search halts. However, for larger instruction
sets, the exhaustive exploration approach becomes virtually impos-
sible. Because of this, the paper proposes a pruning method over
the search space and a fast probabilistic test to check programs
equivalence.

State of the art superoptimizers such as STOKE [16] and
Souper [15] make modifications to the code and generate code
rewrites. A cost function evaluates the correctness and performance
of the rewrites. Correctness is generally estimated by running the
code against test cases (either provided by the user or generated
automatically, e.g. symbolic evaluation on both original and replace-
ment code).

2.3 Souper
Souper is a superoptimizer for LLVM [15]. It enumerates a set of
several optimization candidates to be replaced. An example of such
a replacement is the following, replacing two instructions by a
constant value:

%0:i32 = var (range=[1,0))

%1:i1 = ne 0:i32, %0

cand %1 1:i1

In this case, Souper finds the replacement for the variable %1 as
a constant value (in the bottom part of the listing) instead of the
two instructions above.

Souper is based on a Satisfiability Modulo Theories (SMT) solver.
SMT solvers are useful for both verification and synthesis of pro-
grams [8]. With the emergence of fast and reliable solvers, program
alternatives can be efficiently checked, replacing the probabilistic
test of Massalin [12] as mentioned in subsection 2.2.

In the code to be optimized, Souper refers to the optimization
candidates as left-hand side (LHS). Each LHS is a fragment of code
that returns an integer and is a target for optimization. Two different

LLVM IRC/C++
Program

1

clang

SOUPER IRLLVM Bitcode
(O3)

3

llvm-opt

WebAssemblyLLVM Bitcode
(O3+Souper)

5

wasm-ld

2

llvm-as

4

llvm-opt

Figure 1: Superoptimization pipeline for WebAssembly
based on Souper.

LHS candidates may overlap. For each candidate, Souper tries to
find a right-hand side (RHS), which is a fragment of code that is
combined with the LHS to generate a replacement. In the original
paper’s benchmarks [15], Souper optimization passes were found
to further improve the top level compiler optimizations (-O3 for
clang, for example) for some programs.

Souper is a platform-independent superoptimizer. The cost func-
tion is evaluated on an intermediate representation and not on
the code generated for the final platform. Thus, the tool may miss
optimizations that make sense for the target instruction set.

3 WASM SUPEROPTIMIZATION PIPELINE
The key contribution of our work is a superoptimization pipeline
for WebAssembly. We faced two challenges while developing this
pipeline: the need for a correct WASM generator, and the usage
of a full-fledged superoptimizer. The combination of the LLVM
WebAssembly backend and Souper provides the solution to tackle
both challenges.

3.1 Steps
Our pipeline is a tool designed to output a superoptimized WebAs-
sembly binary file for a given C/C++ program that can be compiled
to WASM. With our pipeline, users write a high level source pro-
gram and get a superoptimized WebAssembly version.

The pipeline (illustrated in Figure 1) first converts a high-level
source language (e.g. C/C++) to the LLVM intermediate representa-
tion (LLVM IR) using the Clang compiler (Step 1). We use the code
generation options in clang in particular the -O3 level of optimiza-
tion which enables aggressive optimizations. In this step, we make
use of the LLVM compilation target for WebAssembly ‘wasm32-
unknown-unknown’. This flag can be read as follows: wasm32
means that we target the 32 bits address space in WebAssembly;
the second and third options set the compilation to any machine
and performs inline optimizations with no specific strategy. LLVM
IR is emitted as output.

37

Superoptimization of WebAssembly Bytecode <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

Secondly, we use the LLVM assembler tool (llvm-as) to convert
the generated LLVM IR to the LLVM bitcode file (Step 2). This LLVM
assembler reads the file containing LLVM IR language, translates it
to LLVM bitcode, and writes the result into a file. Thus, we make
use of the optimizations from clang and the LLVM support for
WebAssembly before applying superoptimization to the generated
code.

Next, we use Souper, discussed in subsection 2.3, to add further
superoptimization passes. Step 3 generates a set of optimized candi-
dates, where a candidate is a code fragment that can be optimized
by Souper. From this, Souper carries out a search to get shorter
instruction sequences and uses an SMT solver to test the semantic
equivalence between the original code snippet and the optimized
one [15].

Step 4 produces a superoptimized LLVM bitcode file. The opt
command is the LLVM analyzer that is shipped with recent LLVM
versions. The purpose of the opt tool is to provide the capability of
adding third party optimizations (plugins) to LLVM. It takes LLVM
source files and the optimization library as inputs, runs the specified
optimizations and outputs the optimized file or the analysis results.
Souper is integrated as a specific pass for LLVM opt.

The last step of our pipeline consists of compiling the generated
superoptimized LLVMbitcode file to aWASMprogram (Step 5). This
final conversion is supported by the WebAssembly linker (wasm-ld)
from the LLD project [13]. wasm-ld receives the object format (bit-
code) that LLVM produces when run with the ‘wasm32-unknown-
unknown’ target and produces WASM bytecode.

To our knowledge, this is the first successful integration of those
tools into a working pipeline for superoptimizing WebAssembly
code.

3.2 Insights
We note that Souper has been primarily designed with the LLVM
IR in mind and requires a well-formed SSA representation of the
program under superoptimization. The biggest challenge with Web-
Assembly is that there no complete transformation from WASM to
SSA. In our pipeline, we work around this by assuming we have ac-
cess to source code, this alternative path may be valid for plugging
other binary format into Souper.

4 EXPERIMENTS
To study the effects and feasibility of applying superoptimization to
WASM code, we run the superoptimization pipeline on a benchmark
of programs.

The benchmark is based on the Rosetta Code corpus1. We have
selected 12 C language programs that compile to WASM. Our selec-
tion of the programs is based on the following criteria:
(1) The programs can be successfully compiled to LLVM IR.
(2) They are diverse in terms of application domain.
(3) The programs are small to medium sized: between 15 and 200

lines of C code each.
(4) They have no dependencies to external libraries.
The code of each program is available as part of our experimental
package2.

1http://rosettacode.org
2https://github.com/KTH/slumps/tree/master/utils/pipeline/benchmark4pipeline_c

Ban
ke

r’s
al
go

rit
hm

A
dd

iti
on

ch
ai
ns

A
liq

uo
t se

qu
en

ce
cla

ss
ifi

ca
tio

ns

Bab
ba

ge
pr

ob
lem

Bitw
ise

io

Eba
n

nu
m

be
rs

Flip
pi

ng
bi

ts
ga

m
e

Par
affi

ns

Pas
ca

l m
at

rix
ge

ne
ra

tio
n

R
es

ist
or

m
es

h

R
un

len
gt

h
en

co
di

ng

Zeb
ra

pu
zz

le

Program names

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
in

st
ru

ct
io

n
s

co
u

n
t

N
o

di
ff

0.
97

94

0.
99

83

0.
46

67

1.
03

20

N
o

di
ff

0.
96

87

0.
97

30

0.
99

89

N
o

di
ff

0.
97

73

0.
99

55

Figure 2: Vertical bars show the relative binary size in # of
instructions. The smaller, the better.

4.1 Methodology
To evaluate our superoptimization pipeline, we run it on each pro-
gram with four Souper configurations:
(1) Inferring only replacements for constant values
(2) Inferring replacements with no more than 2 instructions, i.e. a

new replacement is composed by no more than two instructions
(3) CEGIS (Counter Example Guided Inductive Synthesis, algorithm

developed by Gulwani et al. [9])
(4) Enumerative synthesis with no replacement size limit
In the rest of the paper, we report on the best configuration per
program. Our appendix website contains the results for all configu-
rations and all programs.

With respect to correctness, we rely on Souper’s verification
to check that every replacement on each program is correct. That
means that the superoptimized programs are semantically equiv-
alent. Every candidate search is done with a 300 seconds timeout.
For each program, we report the best optimized case over all men-
tioned configurations. To discuss the results, we report the relative
instruction count before and after superoptimization.

For the baseline program, we ask LLVM to generate WASM pro-
grams based on the ‘wasm32-unknown-unknown’ target with the
-O3 optimization level. Our experiments run on an Azure machine
with 8 cores (16 virtual CPUs) at 3.20GHz and 64GB of RAM.

4.2 Results
Figure 2 shows the relative size improvement with superoptimiza-
tion. The median size reduction is 0.33% of the original instruction
count over the tested programs. From the 12 tested programs, 8
have been improved using our pipeline whereas 3 have no changes
and 1 is bigger (Bitwise IO). The most superoptimized program is
Babbage problem, for which the resulting code after superopti-
mization is 46.67% smaller than the baseline version.

We now discuss the Babbage problem program, originally writ-
ten in 15 lines of C code3. The pipeline found 3 successful code
replacements for superoptimization out of 7 candidates. The best
3http://www.rosettacode.org/wiki/Babbage_problem#C

38

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal J. Cabrera Arteaga, S. Donde, J. Gu, O. Floros, L. Satabin, B. Baudry, and M. Monperrus

superoptimized version contains 21 instructions, which is much less
than the original which has 45 instructions. The superoptimization
code difference program is shown in Figure 3. Our pipeline, using
Souper, finds that the loop inside the program can be replaced with
a const value in the top of the stack, see lines 8 and 12 in Figure 3.
The value, 25264, is the solution to the Babbage problem. In other
terms, the superoptimization pipeline has successfully symbolically
executed the problem.

The Babbage problem code is composed of a loop which stops
when it discovers the smaller number that fits with the Babbage
condition below.

while((n * n) % 1000000 != 269696) n++;

In theory, this value can also be inferred by unrolling the loop
the correct number of times with llvm-opt. However, llvm-opt
cannot unroll a while-loop because the loop count is not known at
compile time. Additionally, this is a specific optimization that does
not generalize well when optimizing for code size and requires a
significant amount of time per loop.

On the other hand, Souper can deal with this case. The variable
that fits the Babbage condition is inferred and verified in the SMT
solver. Therefore the condition in the loop will always be false,
resulting in dead code that can be removed in the final stage that
generates WASM from bitcode.

In the case of the Bitwise IO program, we observe an increase in
the number of instructions after superoptimization. From the origi-
nal number of 875 instructions, the resulting count after the Souper
pass is increased to 903 instructions. In this case, Souper finds 4
successful replacements out of 207 possible ones. Looking at the
changes, it turns out that the LLVM IR code costs less than the origi-
nal following the Souper cost function. However, the WebAssembly
LLVM backend (wasm-ld tool) that transforms LLVM to WASM
creates a longer WASM version. This a consequence of the discus-
sion on Souper in subsection 2.3. In practice, it is straightforward
to detect and discard those cases.

4.3 Correctness Checking
To validate the correctness of the superoptimized program we per-
form a comparison of the output of the non-superoptimized pro-
gram and the superoptimized one. For 7/12 programs, both versions,
non-superoptimized and superoptimized, behave equally and re-
turn the expected output. For 5/12 programs we cannot run them
because the code generated for the target WASM architecture lacks
required runtime primitives.

5 RELATEDWORK
Our work spans the areas of compilation, transformation, optimiza-
tion and web programming. Here we discuss three of the most
relevant works that investigate superoptimization and web tech-
nologies.

Churchill et al. [4] use STOKE [1] to superoptimize loops in
large programs such as the Google Native Client [3]. They use a
bounded verifier to make sure that every generated optimization
goes through all the checks for semantic equivalence. We apply
the concept of superoptimization to the same context, but with a
different stack, WebAssembly. Also, our work offloads the problem

Figure 3: Output of superoptimization WASM bytecode for
the Babbage problem program.

of semantic checking to an SMT solver, included in the Souper
internals.

Emscripten is an open source tool for compiling C/C++ to the
Web Context. Emscripten provides both, the WASM program and
the JavaScript glue code. It uses LLVM to create WASM but it
provides support for faster linking to the object files. Instead of all
the IR being compiled by LLVM, the object file is pre-linked with
WASM, which is faster. The last version of Emscripten also uses
the WASM LLVM backend as the target for the input code.

To our knowledge, at the time of writing, the closest related
work is the “souperify” pass of Binaryen [14]. It is implemented
as an additional analysis on top of the existing ones. Compared to
our pipeline, Binaryen does not synthesize WASM code from the
Souper output.

6 CONCLUSION
We propose a pipeline for superoptimizing WebAssembly. It is a
principled integration of two existing tools, LLVM and Souper, that
provides equivalent and smaller WASM programs.

We have shown that the superoptimization pipeline works on
a benchmark of 12 WASM programs. As for other binary formats,
superoptimization of WebAssembly can be seen as complementary
to standard optimization techniques. Our future work will focus on
extending the pipeline to source languages that are not handled,
such as TypeScript and WebAssembly itself.

ACKNOWLEDGEMENT
This work has been partially supported by WASP program and
by the TrustFull project financed by the Swedish Foundation for
Strategic Research. We thank John Regehr and the Souper team for
their support.

39

Superoptimization of WebAssembly Bytecode <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

REFERENCES
[1] Sorav Bansal and Alex Aiken. 2006. Automatic Generation of Peephole Super-

optimizers. In Proceedings of the 12th International Conference on Architectural
Support for Programming Languages and Operating Systems (San Jose, California,
USA) (ASPLOS XII). Association for Computing Machinery, New York, NY, USA,
394–403. https://doi.org/10.1145/1168857.1168906

[2] Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H. S. Torr, and Pushmeet
Kohli. 2016. Learning to superoptimize programs. arXiv e-prints 1, 1, Article
arXiv:1611.01787 (Nov. 2016), 10 pages. arXiv:cs.LG/1611.01787

[3] Google Chrome. 2013. Welcome to Native Client - Google Chrome. Retrieved
Dec 27, 2019 from https://developer.chrome.com/native-client

[4] Berkeley Churchill, Rahul Sharma, JF Bastien, and Alex Aiken. 2017. Sound Loop
Superoptimization for Google Native Client. SIGPLAN Not. 52, 4 (April 2017),
313–326. https://doi.org/10.1145/3093336.3037754

[5] Emscripten Community. 2015. emscripten-core/emscripten. Retrieved 2019-12-
11 from https://github.com/emscripten-core/emscripten

[6] LLVM community. 2019. LLVM 10 documentation. Retrieved 2019-12-12 from
http://llvm.org/docs/

[7] World Wide Web Consortium. 2016. WebAssembly becomes a W3C Recommen-
dation. Retrieved Dec 5, 2019 from https://www.w3.org/2019/12/pressrelease-
wasm-rec.html

[8] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337–340.

[9] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011.
Synthesis of Loop-Free Programs. SIGPLAN Not. 46, 6 (June 2011), 62–73. https:
//doi.org/10.1145/1993316.1993506

[10] Robbert Gurdeep Singh and Christophe Scholliers. 2019. WARDuino: A Dynamic
WebAssembly Virtual Machine for Programming Microcontrollers. In Proceedings
of the 16th ACM SIGPLAN International Conference on Managed Programming
Languages and Runtimes (Athens, Greece) (MPLR 2019). ACM, New York, NY,
USA, 27–36. https://doi.org/10.1145/3357390.3361029

[11] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
Web up to Speed with WebAssembly. SIGPLAN Not. 52, 6 (June 2017), 185–200.
https://doi.org/10.1145/3140587.3062363

[12] Massalin Henry. 1987. Superoptimizer: a look at the smallest program. ACM
SIGARCH Computer Architecture News 15, 5 (Nov 1987), 122–126. https://doi.
org/10.1145/36177.36194

[13] LLVM. 2019. WebAssembly lld port — lld 10 documentation. https://lld.llvm.
org/WebAssembly.html

[14] WebAssembly. Development of WebAssembly and associated infrastructure. 2017.
emscripten-core/emscripten. Retrieved 2019-12-11 from https://github.com/
WebAssembly/binaryen

[15] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Gra-
tian Lup, Jubi Taneja, and John Regehr. 2017. Souper: A Synthesizing Super-
optimizer. arXiv e-prints 2, 1, Article arXiv:1711.04422 (Nov. 2017), 10 pages.
arXiv:cs.PL/1711.04422

[16] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Superoptimization.
In Proceedings ASPLOS’13. ACM, New York, NY, USA, 305–316. event-place:
Houston, Texas, USA.

40

CROW: CODE DIVERSIFICATION FOR
WEBASSEMBLY

Javier Cabrera-Arteaga, Orestis Floros, Oscar Vera-Pérez, Benoit Baudry,
Martin Monperrus
Network and Distributed System Security Symposium (NDSS 2021), MADWeb

https://doi.org/10.14722/madweb.2021.23004

68

https://doi.org/10.14722/madweb.2021.23004

CROW: Code Diversification for WebAssembly

Javier Cabrera Arteaga
KTH Royal Institute of Technology

Stockholm, Sweden
javierca@kth.se

Orestis Floros
KTH Royal Institute of Technology

Stockholm, Sweden
forestis@kth.se

Oscar Luis Vera Perez
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
oscar.vera-perez@inria.fr

Benoit Baudry
KTH Royal Institute of Technology

Stockholm, Sweden
baudry@kth.se

Martin Monperrus
KTH Royal Institute of Technology

Stockholm, Sweden
martin.monperrus@csc.kth.se

Abstract—The adoption of WebAssembly increases rapidly,
as it provides a fast and safe model for program execution
in the browser. However, WebAssembly is not exempt from
vulnerabilities that can be exploited by malicious observers.
Code diversification can mitigate some of these attacks. In this
paper, we present the first fully automated workflow for the
diversification of WebAssembly binaries. We present CROW, an
open-source tool implementing this workflow through enumera-
tive synthesis of diverse code snippets expressed in the LLVM
intermediate representation. We evaluate CROW’s capabilities
on 303 C programs and study its use on a real-life security-
sensitive program: libsodium, a modern cryptographic library.
Overall, CROW is able to generate diverse variants for 239 out of
303 (79%) small programs. Furthermore, our experiments show
that our approach and tool is able to successfully diversify off-
the-shelf cryptographic software (libsodium).

I. INTRODUCTION

WebAssembly is the fourth official language of the Web
[36]. The language provides low-level constructs enabling
efficient execution times, much closer to native code than
JavaScript. It constitutes a fast and safe platform to execute
programs in the browser and embedded environments [21].
Consequently, the adoption of WebAssembly has been rapidly
growing since its introduction in 2015. Nowadays, languages
such as Rust and C/C++ can be compiled to WebAssembly using
mature toolchains and can be executed in all notable browsers.

The WebAssembly execution model is designed to be
secure and to prevent many memory and control flow attacks.
Still, as its official documentation admits [11], WebAssembly
is not exempt from vulnerabilities that could be exploited [30].
Code diversification [5], [28] is one additional protection that
can harden the WebAssembly stack. This consists in synthe-
sizing different variants of an original program that provide
the same functionalities but exhibit different execution traces.
In this paper, we investigate the feasibility of diversifying
WebAssembly code, which is, to the best of our knowledge,
an unresearched area.

Our contribution is a workflow and a tool, called CROW,
for automatic diversification of WebAssembly programs. It
takes as input a C/C++ program and produces a set of diverse
WebAssembly binaries as output. The workflow is based on
enumerative code synthesis. First, CROW lists blocks that
are potentially relevant for diversification, second, CROW
enumerates alternative instruction sequences, and third, CROW
checks that the new instruction sequences are functionally
equivalent to the original block. CROW builds on the idea
of superdiversification [25] and extends the concept to the
enumeration of a set of variants instead of synthesizing only
one solution. We also take into account the specificities of
WebAssembly and the details of its execution.

We evaluate the diversification capabilities of CROW in
two ways. First, we diversify 303 small C programs compiled
to WebAssembly. Second, we run CROW to diversify a real-
life cryptographic library that natively supports WebAssem-
bly. In both cases, we measure the diversity among binary
code variants, as well as the diversity of execution traces.
When measuring the diversity in binary code, we compare
the WebAssembly and the machine code variants. This way
we assess the ability of CROW at synthesizing variations in
WebAssembly, as well as the extent to which these variations
are preserved when compiling WebAssembly to machine code.
Our original experiments demonstrate the feasibility of diver-
sifying WebAssembly code. CROW generates diverse variants
for 239/303 (79%) C programs. TurboFan, the optimizing
compiler used in the V8 engine, preserves 99.48% of these
variants. CROW successfully synthesizes variants for the cryp-
tographic library. The variants indeed yield either different
execution traces. This is promising milestone in getting a more
secure Web environment through diversification.

To sum up, our contributions are:

• CROW: the first automated workflow and tool to diver-
sify WebAssembly programs, it generates many diverse
WebAssembly binaries from a single input program.
• A quantitative evaluation over 303 programs showing the

capability of CROW to diversify WebAssembly binaries
and measuring the impact of diversification on execution
traces.
• A feasibility study of the diversification on a real-world

WebAssembly program, demonstrating that CROW can
handle libsodium, a state-of-the-art cryptographic library.

Network and Distributed Systems Security (NDSS) Symposium 2021
21-24 February 2021, San Diego, CA, USA
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/madweb.2021.23xxx
www.ndss-symposium.org

II. BACKGROUND

A. WebAssembly

WebAssembly is a binary instruction format for a stack-
based virtual machine. It is designed to address the problem
of safe, fast, portable and compact low-level code on the
Web. The language was first publicly announced in 2015
and since then, most major web browsers have implemented
support for the standard. Besides the Web, WebAssembly is
independent of any specific hardware or languages and can run
in a standalone Virtual Machine (VM) or in other environments
such as Arduino [20]. A paper by Haas et al. [21] formalizes
the language and its type system, and explains the design
rationale.

Listing 1 and 2 illustrate WebAssembly. Listing 1 presents
the C code of two functions and Listing 2 shows the result of
compiling these two functions into a WebAssembly module.
The type directives at the top of the module declare the
function: the types of its parameters and the type of the
result. Then, the definitions for the function follow. These
definitions are sequences of stack machine instructions. At the
end, the main function is exported so that it can be called from
outside this WebAssembly module, typically from JavaScript.
WebAssembly has four primitive types: integers (i32 and i64)
and floats (f32 and f64) and it includes structured instructions
such as block, loop and if.

Listing 1: C function that calculates the quantity 2x+ x
int f(int x) { return 2 * x + x; }

int main(void) { return f(10); }

Listing 2: WebAssembly code for Listing 1.
(module

(type (;0;) (func (param i32) (result i32)))
(type (;1;) (func (result i32)))
(func (;0;) (type 0) (param i32) (result i32)

local.get 0
local.get 0
i32.const 2
i32.mul
i32.add)

(func (;1;) (type 1) (result i32)
i32.const 10
call 0)

(export "main" (func 1)))

WebAssembly is characterized by an extensive security
model [11] founded on a sandboxed execution environment
that provides protection against common security issues such
as data corruption, code injection and return oriented program-
ming (ROP). However, WebAssembly is no silver bullet and
is vulnerable under certain conditions [30]. This motivates our
work on software diversification as one possible mitigation
among the wide range of security counter-measures.

B. Motivation for Moving Target Defense in the Web

The distribution model for web computing is as follows:
build one binary and distribute millions of copies, all over the
world, which run on browsers. In this model an attacker has
two key advantages over the developers: she has a runtime

environment that she fully controls and observes in any possi-
ble way. Consequently, when she finds a flaw in this virtually
transparent environment, knowing that this flaw is present in
the millions of copies that have been distributed over the world,
she can exploit the flaw at scale.

The developers can never assume that they can control the
web browser. Yet, they can challenge the second advantage
of the attacker, known as the break-once-break-everywhere
advantage. The developers can stop distributing clones of the
binary and distribute diverse versions instead, as suggested by
the pioneering software diversification works of Cohen [12]
and Forrest et al. [19].

In the context of diversification, moving target defense [40]
means distributing diverse variants constantly. In the context of
the web, it means distributing a different variant at each HTTP
request. Moving target defense is appropriate for mitigating
yet unknown vulnerabilities. The diversification technique does
not always remove the potential flaws, yet the vulnerabilities
in the diversified binaries can be located in different places.
With moving target defense, a successful attack on one browser
cannot be performed on another browser with the same ef-
fectiveness. The diversified binaries that CROW outputs can
be used interchangeably over the network, in a moving target
defence choreographed over the web.

To sum up, by combining moving target defense deploy-
ment to diversification, we reduce the information asymmetry
between the Web attacker and the defender, increasing the
uncertainty and complexity of successful attacks over all client
browsers [16], [42].

III. CROW’S DIVERSIFICATION TECHNIQUE

In this section we describe the workflow of CROW for
diversifying WebAssembly programs. First we introduce the
main concepts behind CROW. Then, we describe each stage
of the workflow and we discuss the key implementation details.

A. Definitions

In this subsection we define the key concepts for CROW.

Definition 1: Block (based on Aho et al. [2]): Let P be
a program. A block B is a grouping of declarations and
statements in P inside a function F .

Definition 2: Program state (based on Mangpo et al. [35]):
At any point in time, the program state S is defined as the
collection of local and global variables, and, the program
counter pointing to the next instruction.

Definition 3: Pure block: A block B is said to be pure if
and only if, given the program state Si, every execution of B
produces the same state So.

Definition 4: Functional equivalence modulo program
state (based on Le et al. [29]): Let B1 and B2 be two blocks.
We consider the program state before the execution of the
block, Si, as the input and the program state after the execution
of the block, So, as the output. B1 and B2 are functionally
equivalent if given the same input Si both codes produce the
same output So.

2

Definition 5: Code replacement: Let P be a program and T
a pair of blocks (B1, B2). T is a candidate code replacement
if B1 and B2 are both pure as defined in Definition 3 and
functionally equivalent as defined in Definition 4. Applying
T to P means replacing B1 by B2. The application of T
to P produces a program variant P ′ which consequently is
functionally equivalent to P .

CROW generates new program variants by finding and
applying code replacements as defined in Definition 5. A
program variant could be produced by applying more than one
candidate code replacement. For example, the tuple, composed
by the code blocks in Listing 3 and Listing 4, is a code
replacement for Listing 2.

Listing 3: WebAssembly
pure code block from List-
ing 2.
local.get 0
i32.const 2
i32.mul ; 2 * x ;

Listing 4: Code block that
is functionally equivalent to
Listing 3
local.get 0
i32.const 1
i32.shl ; x << 1 ;

B. Overview

CROW synthesizes variants for WebAssembly programs.
We assume that the programs are generated through the
LLVM compilation pipeline. This assumption is motivated as
follows: first, LLVM-based compilers are the most popular
compilers to build WebAssembly programs [30]; second, the
availability of source code (typically C/C++ for WebAssembly)
provides a structure to perform code analysis and produce code
replacements that is richer than the binary code.

CROW takes as input a C/C++ program and produces a
set of unique, diversified WebAssembly binaries. Figure 1
shows the stages of this workflow. The workflow starts with
compiling the input program into LLVM bitcode using clang.
Then, CROW analyzes the bitcode to identify all pure blocks
and to synthesize a set of candidate replacements for each
pure block. This is what we call the exploration stage. In
the generation stage, CROW combines the candidate code
replacements to generate different LLVM bitcode variants.
Finally, those bitcode variants are compiled to WebAssembly
binaries that can be sent to web browsers.

Challenges. The concept of diversifying WebAssembly
programs is novel and it is arguably hard for the following
reasons. First, WebAssembly is a structured binary format,
without goto-like instructions. This prevents the direct ap-
plication of a wide range of diversification operators based
on goto [41]. Second, the existing transformation and di-
versification tools target instruction sets larger than the one
of WebAssembly [39]. This limits the efficiency of diversi-
fication, and the possibility of searching for a large num-
ber of equivalent code replacements. We address the former
challenge using the LLVM intermediate representation as the
target for diversification. We address the latter challenge by
tailoring a superoptimizer for LLVM, using its subset of the
LLVM intermediate representation. In particular, we prevent
the superoptimizer from synthesizing instructions that have
no correspondence in WebAssembly (for example, freeze
instructions), which is an essential step to get executable
diversified WebAssembly code.

C. Exploration stage

Given a program P for which we want to generate Web-
Assembly variants, the exploration stage of CROW identifies
all pure blocks in the LLVM bitcode of P . CROW considers
every directed acyclic graph contained in one function as a
pure block. Then, CROW searches for code replacements for
each one of them.

The generation of a code replacement consists of two steps.
First, the synthesis of the new block, and, second, equivalence
checking. Every variant block that passes the equivalence
check is stored for use in diversification. The synthesis of block
variants consists of enumerating all possible blocks that can
be built as a combination of a given number of instructions,
bounded by a maximum value to keep a tractable synthesis
space.

There are two parameters to control the size of the search
space and hence the time required to traverse it. On one hand,
one can limit the size of the variants. In our experiments we
limit the block variants to a maximum of 50 instructions. On
the other hand, one can limit the set of instructions that are
used for the synthesis. In our experiments, we use between 1
instruction (only additions) and 60 instructions (all supported
instructions in the synthesizer). This configuration allows the
user to find a trade-off between the amount of variants that are
synthesized and the time taken to produce them.

Listing 5: Listing 1 in LLVM’s intermediate representation.

define i32 @f(i32) {
%2 = mul nsw i32 %0,2
%3 = add nsw i32 %0,%2

ret i32 %3
}

define i32 @main() {
%1 = tail call i32 @f(i32 10)
ret i32 %1
}

Block A
%2 = mul nsw i32 %0,2

Block B
%2 = mul nsw i32 %0,2
%3 = add nsw i32 %0,%2

In Listing 5 we illustrate the LLVM bitcode representation
of Listing 1. In this bitcode, CROW identifies two pure
blocks in function f(), which are displayed on the right
part of the listing, in gray and green. The first pure block
is composed of one single instruction (line 2) that performs
the 2*x multiplication. The second block has two instructions,
one multiplication and one addition.

Using CROW, it is possible to diversify both blocks. For
example, using a maximum of 1 instruction per replacement
and searching over the complete bitcode instruction set, a
potential replacement for Block A is: %2 = shl nsw i32
%0,1 %. This replacement calculates the same expression
2*x, using a shift left operation.

To determine the equivalence between a pure block and a
candidate replacement, we use an equivalence checker based
on SMT [17]. In our example, the checker would prove that
there cannot be a value of x such that 2 ∗ x 6= x � 1. In
general, if no such counter-example exists, then the functional
equivalence is assumed. On the other hand, if there exists an
input resulting in different outputs for a block and a variant,
then they are proven not equivalent and the variant is discarded.

3

CROW

WASM

clang
LLVM
WASM
Backend

C/C++	
source	code

LLVM
	bitcode

LLVM
	bitcode
variant

WASM

WASM

LLVM
	bitcode
variant

LLVM
	bitcode
variant

...
...

2

Exploration Generation

1

Code	replacements

Code
block

Equivalent
code	block

...

Code
block

Equivalent
code	block

Code
block

Equivalent
code	block

Fig. 1: CROW’s workflow for diversifying WebAssembly programs.

D. Generation stage

In this stage, we select and combine code replacements that
have been synthesized during the exploration stage, in order to
generate WebAssembly binary variants. We apply each code
replacement to the original program to produce a LLVM IR
variant. Then, this IR is compiled into a WebAssembly binary.
CROW generates WebAssembly binaries from all possible
combinations of code replacements as the power set over all
code replacements.

After the exploration phase, it is possible that two subsets
of code replacements overlap, i.e., they produce the same
WebAssembly binary. The overlap between blocks is explained
as follows: Let S = {(B1, R1), (B1, R2), · · · , (Bn, Rm)} be
a set of candidate replacements over a program P . If two
blocks from the original program Bi, Bj , j 6= i, overlap, i.e.,
the intersection of CFG(Bi)

1 and CFG(Bj) is not empty,
then only the replacements of the largest original block are
preserved when combining blocks.

In this example, the exploration stage synthesizes 6 + 1
bitcode variants for the considered blocks respectively, which
results in 14 module variants (the power set combination size).
Yet, the generation stage would eventually generate 7 variants
from the original WebAssembly binary. This gap between the
number of potential and the actual number of variants is a
consequence of the redundancy among the bitcode variants
when composing several variants into one.

E. Implementation

The majority of the WebAssembly applications are built
from C/C++ source code using the LLVM toolchain. Conse-
quently, the implementation of CROW is based on LVVM/
Furthermore, CROW extends Souper [38], a superoptimizer
for LLVM that aims to reduce the size of binary code. Souper
has its own intermediate representation, which is a subset of
the LLVM IR.

To extract code blocks, we scan LLVM modules, looking
for instructions that return integer-typed values. Each such
instruction is considered as the exit of a code block. Souper’s
representation of a code block is built as a backward traversal
process through the dependencies of the detected instruction.

1CFG(A) refers to backward Control Flow Graph starting at inst. A.

If memory loads or function calls are found, the backward
traversal process is stopped and the current instruction is
considered as an input variable for the code block. Notice
that, by construction, Souper’s translation is oblivious to the
memory model, thus, it cannot infer string data types or
other abstract data types. The translation from Souper IR to a
BitVector SMT theory is done on the fly. Souper uses the z32

solver to check the equivalence between a code block original
and a potential replacement for it.

We now summarize the main changes that we implement
in Souper and in the LLVM backend in order to support
diversification. Souper, as a superoptimizer, aims at gener-
ating a single variant that is smaller than the original, yet
we want to obtain as many blocks as possible. To achieve
automatic diversification, we modify Souper to disable the
key cost restriction functions, data-flow pruning and peephole
optimizations, all being detrimental for diversification. In order
to increase the number of variants that CROW can generate,
CROW parallelizes the process of replacement synthesis.

In addition, CROW orchestrates a series of Souper execu-
tions with various configurations (in particular the size of the
replaced expression). Finally, we carefully fine-tune a set of
19 Souper options to ensure that the search is effective for
diversification in feasible time.

In the generation stage of CROW, we also modify Souper
to amplify the generation of WebAssembly binary diversity.
Initially, Souper generates a single bitcode variant, inserting
all replacements at once. We modify it so that we can obtain
a combination of code replacements. Finally, on the LLVM
side, we disable all peephole optimizations in the WebAssem-
bly backend, in particular instructions merging and constant
folding. This aims to preserve the variations introduced in the
LLVM bitcode during the generation of binaries.

The implementation of CROW is publicly available for
sake of open science and can be reviewed at https://github.
com/KTH/slumps/tree/master/crow.

IV. EVALUATION PROTOCOL

To evaluate the capabilities of CROW to diversify Web-
Assembly programs, we formulate the following research

2https://github.com/Z3Prover/z3

4

questions:

RQ1: To what extent are the program variants generated
by CROW statically different? We check whether
the WebAssembly binary variants produced by CROW
are different from the original WebAssembly binary.
Then, we assess whether the generation of x86 machine
code performed by V8’s WebAssembly engine preserves
CROW’s transformations.

RQ2: To what extent are the program variants gener-
ated by CROW dynamically different? It is known
that not all diversified programs produce distinguishable
executions [15], sometimes it is impossible to observe
different behaviors between variants. We check for the
presence of different behaviors with a custom Web-
Assembly interpreter, characterizing the behavior of a
WebAssembly program by its stack operation trace.

RQ3: To what extent can CROW be applied to diversify
real-world security-sensitive software? We assess the
ability of CROW to diversify a state-of-the-art crypto-
graphic library for WebAssembly, libsodium [18].

A. Corpus

We answer RQ1 and RQ2 with a corpus of programs appro-
priate for our experiments. We take programs from the Rosetta
Code project3. This website hosts a curated set of solutions for
specific programming tasks in various programming languages.
It contains a wide range of tasks, from simple ones, such as
adding two numbers, to complex algorithms like a compiler
lexer. We first collect all C programs from Rosetta Code, which
represents 989 programs as of 01/26/2020. Next, we apply a
number of filters. We discard 1) all programs that do not com-
pile with clang, 2) all interactive programs requiring input
from users i.e., invoking functions like scanf, 3) all programs
that contain more than 100 blocks, 4) all programs without
termination, 5) all programs with non-deterministic operations,
for example, programs working with time or random functions.
This filter produces a final set of 303 programs.

The result is a corpus of 303 C programs. These programs
range from 7 to 150 lines of code and solve a variety of prob-
lems, from the Babbage problem to Convex Hull calculation.

B. Protocol for RQ1

With RQ1, we assess the ability of CROW to generate
WebAssembly binaries that are different from the original
program. For this, we compute a distance metric between the
original WebAssembly binary and each binary generated by
CROW. Since WebAssembly binaries are further transformed
into machine code before they execute, we also check that this
additional transformation preserves the difference introduces
by CROW in the WebAssembly binary. We use the Turbofan
ahead-of-time compiler of V8, with all its possible optimiza-
tions, to generate a x86 binary for each WebAssembly binary.
Then, we compare the x86 version of each variant against the
x86 binary corresponding to the original WebAssembly binary.

We compare the WebAssembly and machine code of each
program and its variant using Dynamic Time Warping (DTW)

3http://www.rosettacode.org/wiki/Rosetta Code

[31]. DTW computes the global alignment between two se-
quences. It returns a value capturing the cost of this alignment,
which is actually a distance metric, called DTW. The larger the
DTW distance, the more different the two sequences are. In our
case, we compare the sequence of instructions of each variant
with the initial program and the other variants. We obtain two
DTW distance values for each program-variant pair: one at the
level of WebAssembly code and the another one at the level
of x86 code. Metric 1 below defines these metrics.

Metric 1: dt static: Given two programs PX and VX

written in X code, dt static(PX , VX), computes the DTW
distance between the corresponding program instructions for
representation X (X ∈ {Wasm, x86}). A dt static(PX ,
VX) of 0 means that the code of both the original program
and the variant is the same, i.e., they are statically identical
in the representation X . The higher the value of dt static,
the more different the programs are in representation X.

We run CROW on our corpus of 303 programs. We
configure CROW to run with a diversification timeout of 6
hours per program. For each program, we collect the set of
generated variants. For all pairs program, variant that are
different, we compute both dt static for WebAssembly and
x86 representations.

The key property we consider is as follows: if
dt static(PWasm, P ′

Wasm) > 0 and dt static(Px86, P ′
x86)

> 0, this means that both programs are still different when
compiled to machine code, and we conclude that V8’s compiler
does not remove the transformations made by CROW. Notice
that, this property only makes sense between variants of the
same program (including the original).

C. Protocol for RQ2

For RQ2, we compare the executions of a program and its
variants for a given input. In this experiment, we characterize
the execution of a WebAssembly binary according to its trace
of stack operations.

This method of tracing allows us to evaluate CROW’s
effect on program execution according to the WebAssembly
specification, independently of any specific engine.

For each execution of a WebAssembly program, we collect
a trace of stack operations. These traces are composed of stack-
type instructions: push <value> and pop <value>. All
traces are ordered with respect to the timestamp of the events.
We compare the traces of the original program against those of
the variants with DTW. DTW computes the global alignment
between two traces and provides a value for the cost of this
alignment.

Metric 2: dt dyn: Given a program P and a CROW gen-
erated variant P’, dt dyn(P,P’), computes the DTW distance
between the corresponding stack operation traces collected
during their execution. A dt dyn of 0 means that both traces
are identical. The higher the value, the more different the stack
operation traces.

To answer RQ2 we compute Metric 2 for a study subject
program and all the unique program variants generated by
CROW in a pairwise comparison. The pairwise comparison

5

allows us to compare the diversity between variants as well.
We use SWAM4 to collect the stack operation traces. SWAM
is a WebAssembly interpreter that provides functionalities to
capture the dynamic information of WebAssembly program
executions including the stack operations. We compute the
DTW distances with STRAC [10].

The builtin WebAssembly API for JavaScript is usually
mutable, thus, the same model for traces collection can be
implemented on top of V8. In other words, a custom interpreter
can be implemented in order to collect the traces in the browser
or standalone JavaScript engines. This validates the usage of
SWAM to study the traces diversity.

D. Protocol for RQ3

In RQ3, we assess the ability of CROW to diversify
a mature and complex software library related to security.
We choose the libsodium [18] cryptographic library, which
natively compiles to WebAssembly. With 3752 commits con-
tributed by 96 developers, its API provides the basic blocks for
encryption, decryption, signatures and password hashing. We
experiment with code revision 2b5f8f2b, which contains 45232
lines of C code. Libsodium has 102 separate WebAssembly
modules that we use as input for CROW. Each module
corresponds to one C file that encompasses a set of related
functions.

To answer RQ3, we run CROW on the libsodium bitcodes,
generating a set of WebAssembly variants. Then, we assess
both binary code diversity and behavioural diversity between
the variants and the original libsodium, using the same tech-
niques as in RQ1 and RQ2.

Collecting traces The libsodium repository includes an
extensive test suite of 77 tests, where one test is one usage
scenario. We use this test suite to measure the trace diversity
among program variants. Since some test traces are larger than
1 GB each, we focus on reasonably sized tests: we select the
41/77 test cases that produce a trace containing less than 50
million events each.

To measure the relative trace diversification for each test,
we normalize the dt dyn used in RQ2 by dividing it with
the length of the original trace. This allows us to compare the
relative success of CROW’s diversification technique across
different tests.

Since libsodium uses a pseudo-number generator, we set
a static seed when executing libsodium, so that the diversity
observed in traces is only due to CROW’s diversification. This
seed is given to the arc4random API used by libsodium in
WebAssembly. To quantify the effectiveness of our diversifica-
tion technique, we compare the trace distance produced by our
technique with the trace distance that occurs when the seed is
changed (baseline).

V. EXPERIMENTAL RESULTS

In this section we present the results for the research
questions formulated in section IV.

4https://github.com/satabin/swam

0 2000 4000 6000

DTW distance

0%

20%

40%

60%

80%

100% DTW(wasm)

DTW(x86)

0 5
0.00

0.25

0.50

Fig. 2: Cumulative distribution for all pairwise comparisons
between a program and its variants. Each line corresponds to
a different program representation.

A. To what extent are the program variants generated by
CROW statically different?

We run CROW on 303 C programs compiled to WebAs-
sembly. CROW produces at least one unique program variant
for 239/303 programs. For the rest of the programs (64/303),
the timeout is reached before CROW can find any valid variant.

We subsequently perform a manual analysis of the pro-
grams that yield more than 100 unique WebAssembly variants.
This reveals one key reason that favors a large number of
unique WebAssembly variants: the programs include bounded
loops. In these cases CROW synthesizes variants for the loops
by unrolling them. Every time a loop is unrolled, the loop body
is copied and moved as part of the outer scope of the loop.
This creates a new, statically different, program. The number
of programs grows exponentially with nested loops.

A second key factor for the synthesis of many variants
relates to the presence of arithmetic. Souper, the synthesis
engine used by CROW, is effective in replacing arithmetic
instructions by equivalent instructions that lead to the same
result. For example, CROW generates unique variants by re-
placing multiplications with additions or shift left instructions
(Listing 8). Also, logical comparisons are replaced, inverting
the operation and the operands (Listing 9).

Listing 8: Diversification
through arithmetic expression
replacement.

local.get 0
i32.const 2
i32.mul

local.get 0
i32.const 1
i32.shl

Listing 9: Diversification
through inversion of
comparison operations.

local.get 0
i32.const 10
i32.gt_s

i32.const 11
local.get 0
i32.le_s

We now discuss the prevalence of the transformations made
by CROW when the WebAssembly binaries are transformed to
machine code, specifically with the V8’s engine. In Figure 2
we plot the cumulative distribution of dt static, comparing
WebAssembly binaries (in blue) and x86 binaries (in orange).
The figure plots a total of 103003 dt static values for each
representation, two values for each variant pair comparison
(including original) for the 239 program. The value on the
y-axis shows which percentage of the total comparisons lie

6

Listing 10: Excerpt of WebAssembly program p74: CROW
replaces a loop by a constant.

local.set 1
loop ;; label = @1
...

end
...
i32.store

local.get 0
i32.const 25264

i32.store

below the corresponding dt static value on the x-axis. Since
we measure the distances between original programs and
WebAssembly variants, then 100% of these binaries have
dt static > 0. Let us consider the x86 variants: dt static is
strictly positive for 99.48% of variants. In all these cases, the
V8 compilation phase does not undo the CROW diversification
transformations. Also, we see that there is a gap between
both distributions, the main reason is the natural inflation
of machine code. For example, two variants that differ by
one single instruction in WebAssembly, can be translated to
machine code where the difference is increased by more than
one machine code instruction.

The zoomed subplot focuses on the beginning of the
distribution, it shows that the dt static is zero for 0.52% of
the x86 binaries. In these cases the V8 TurboFan compiler
from WebAssembly to x86 reverts the CROW transformations.
We find that CROW produces at least one of these reversible
transformations for 34/239 programs. Listing 11 shows one
of the most common transformations that is reversed by
TurboFan, according to our experiments.

Listing 11: Replacement in WebAssembly that is trans-
lated to the same x86 code by V8-TurboFan.

i32.const -<n>
i32.sub

i32.const <n>
i32.add

We look at the cases that yield a small number of variants.
There is no direct correlation between the number of identified
blocks and the number of unique variants. We manually
analyze programs that include a significant number of pure
blocks, for which CROW generates few variants. We identify
two main challenges for diversification.

1) Constant computation We have observed that Souper
searches for a constant replacement for more than 45% of
the blocks of each program while constant values cannot be
inferred. For instance, constant values cannot be inferred for
memory load operations because CROW is oblivious to a
memory model.

2) Combination computation The overlap between code
replacements, discussed in subsection III-D, is a second factor
that limits the number of unique variants. CROW can generate
a high number of variants, but not all replacement combina-
tions are necessarily unique.

Regarding the potential size overhead of the generated
variants, we have compared the WebAssembly binary size of

the 239 programs with their variants. The ratio of size change
between the original program and the variants ranges from
82% (variants are smaller) to 125% (variants are larger) for
all Rosetta programs. This limited impact on the binary size
of the variants is good news because they are meant to be
distributed to browsers over the network.

Answer to RQ1

CROW is able to generate diverse variants of Web-
Assembly programs for 239/303 (79%) programs in
our corpus. We observe that programs that include
bounded loops and arithmetic expressions are highly
prone to diversification. V8’s TurboFan compilation
to x86 code preserves 99.48% of the transformations
performed by CROW. To our knowledge, this is the
first ever realization of automated diversification for
WebAssembly.

B. To what extent are the program variants generated by
CROW dynamically different?

Now, we focus on the 41 programs that have at least 9
unique WebAssembly variants in order to study the diversity
of execution traces. We apply the protocol described in sub-
section IV-C by executing the WebAssembly programs and
their unique variants in order to collect the stack operation
traces. Then, we compare the traces of each pair of original
program and a variant. We run 1906 program executions and
we perform 98774 trace pair comparisons.

Table I summarizes the observed trace diversity, as captured
by dt dyn (Metric 2), among each program and their variants.
The table is structured as follows: the first, second and third
columns contain the program id, the number of unique variants
and the overall sum of all blocks replacements respectively.
The table summarizes the distribution of distances between
stack operation trace pairs: the minimum value, the maximum
value, the median value, the percentage of values equal to zero
and the percentage of values greater than zero. The programs
are sorted with respect to the number of unique variants. The
green highlight color in > 0% columns represents more than
50% of non-zero comparisons, i.e., high diversification. For
instance, the first row shows the trace diversity for p96, where
99.70% of the pairwise comparisons between all collected
traces have a different dt dyn .

For the stack operation traces, all programs have at least
one variant that produces a trace different from the original.
All but one (p81) programs have the majority of variants
producing a different stack operation trace. This shows the
real effectiveness of CROW for diversifying stack operation
traces.

We manually analyze variants with high and low trace
diversity. We observe that constant inferring is effective at
changing the stack operation trace. For instance, for program
p74 shown in Listing 10, CROW removes a loop by replacing
it with a constant assignment. The execution of this variant
produces traces that are different because the loop pattern is
not visible anymore in the trace, and consequently, the distance
between the original and the variant traces is large.

7

NAME #var Σ Min Max Median 0 % > 0 %

1 p96 220 15 0 24062 820 0.30 99.70

2 p56 192 36 0 45420 1416 1.84 98.16

3 p78 159 35 0 20501 759 1.52 98.48

4 p111 144 45 0 2114 520 3.74 96.26

5 p166 101 152 0 44538 66 45.80 54.20

6 p122 91 34 0 46026 6434 0.24 99.76

7 p67 89 77 0 94036 85692 0.29 99.71

8 p68 85 10 0 10554 260 3.64 96.36

9 p80 78 9 0 17238 618 3.92 96.08

10 p204 77 42 0 36428 3356 0.33 99.67

11 p183 76 9 0 90628 84402 0.57 99.43

12 p136 62 70 0 62953 58028 0.60 99.40

13 p167 46 232 8 888 724 0.00 100.00

14 p226 42 13 0 90736 74476 8.26 91.74

15 p99 38 74 16 9936 5037 0.00 100.00

16 p18 36 7 0 15620 145 1.10 98.90

17 p140 29 17 0 13280 172 6.59 93.41

18 p59 27 6 0 85390 40 1.43 98.57

19 p199 21 87 0 27482 728 4.68 95.32

20 p91 21 21 0 50002 228 43.81 56.19

21 p223 21 115 16 40911 632 0.00 100.00

NAME #var Σ Min Max Median 0 % > 0 %

22 p168 20 6 0 22200 18896 2.20 97.80

23 p174 18 40 6 6566 6395 0.00 100.00

24 p81 17 86 0 4419 0 84.62 15.38

25 p141 17 6 8 2894 132 0.00 100.00

26 p108 16 6 0 85168 79903 8.97 91.03

27 p98 15 4 0 33 25 6.06 93.94

28 p89 14 45 10 15952 89 0.00 100.00

29 p36 14 52 312 33266 30298 0.00 100.00

30 p135 13 5 0 20288 20163 3.57 96.43

31 p161 12 91 240 9792 1056 0.00 100.00

32 p147 12 32 0 54071 21274 7.14 92.86

33 p11 10 38 29798 51846 35119 0.00 100.00

34 p125 10 51 0 4399 4368 7.14 92.86

35 p131 9 4 140 1454 685 0.00 100.00

36 p69 9 48 28 29243 28956 0.00 100.00

37 p134 9 20 4 514 186 0.00 100.00

38 p74 9 19 126 8332 6727 0.00 100.00

39 p79 9 97 4 29 16 0.00 100.00

40 p33 9 52 4 2342 15 0.00 100.00

41 p157 9 64 36 242 166 0.00 100.00

TABLE I: Dynamic diversity for 41 diversified WASM programs. The dynamic diversity is captured by dt dyn between traces.
The rows are sorted by the number of unique variants per program. The table is structured as follows: the first, second and
third columns contain the program id, the number of unique variants and the overall sum of all blocks replacements respectively.
Following, the stats for the dt dyn metric. The colorized cells in the > 0% column represent high diversification.

Listing 12: Statically different WebAssembly replacements
with the same behavior, gray for the original code, green for
the replacement.

(1) i32.lt_u
(2) i32.le_s

i32.lt_s
i32.lt_u

(3) i32.ne
(4) local.get 6

i32.lt_u
local.get 4

We note that there is no relation between the trace distance
and the number of block replacements. A high trace distance
does not necessarily imply a high number of replacements.
For instance, program p135 has only 4 possible replacements
overall its 5 identified blocks yet a median dt dyn of 20163.

We subsequently analyze the cases where diversification is
not reflected in stack operation traces. For example, more than
40% of the pairwise dt dyn distances for p166, p91 and
p81 are equal to zero. This indicates a lower diversity among
the population of variants, than for all the other programs.
This happens because some variants have two different bitcode
instructions (original and replacement) that trigger the same
stack operations. The instructions in Listing 12 are concrete
cases of such kind of replacements. The four cases in List-
ing 12 leave the same value in the stack operation trace.
For each case, the original instruction and the replacement
are semantically equal in the program domain. The fourth
case is a local variable index reallocation, this replacement
only changes the index of the local variable but not the event
in the stack operation trace. These replacements are sound,

produce statically diverse code, but they are not useful to
dynamically diversify the original program. This confirms the
complementary of using static and dynamic metrics to assess
diversification.

The effectiveness of CROW on diversifying stack operation
traces is significant. In a security context, such diverse stack
operation traces are likely to mitigate potential side-channel
attacks [30]. Notably, the attacks based on code profiling are
affected when the executed opcodes and the corresponding
profiles are different [37].

Answer to RQ2

CROW is successful at generating diverse WebAssem-
bly variant programs, for which we are able to observe
different stack operation traces. In other words, CROW
generates dynamically different binaries, and ensures
that variants of a given program yield different stack
operation traces.

C. To what extent can CROW be applied to diversify real-
world security-sensitive software?

We run CROW on each of the 102 modules of libsodium
with a 6-hour timeout. We find 45/102 modules that do not
contain any pure block, so they are not amenable to our
diversification technique. CROW produces at least one valid
WebAssembly module variant for 15 of the remaining 57
modules.

8

Module & Description #var #func Diversified Functions #calls
argon2-core
Core functions for the implementation of the Argon2 key
derivation (hash) function [9].

17 6 argon2_finalize
argon2_free_instance
argon2_initialize

0
0
0

argon2-encoding
Functions for encoding and decoding (including salting) Ar-
gon2 [9] hash strings.

11 2 argon2_decode_string
argon2_encode_string

0
0

blake2b-ref
Reference implementation for the BLAKE2 [4] hash function.

7 11 blake2b
blake2b_salt_personal
blake2b_update

0
1.46E+04
2.04E+04

chacha20_ref
Reference implementation of the ChaCha20 stream cipher [6].

7 5 chacha20_encrypt_bytes
stream_ietf_ext_ref_xor_ic
stream_ref
stream_ref_xor_ic

3.51E+06
7.62E+03
1.14E+04
1.14E+05

codecs
Implementations of commonly used codecs for conversions
between binary formats like Base64 [26].

79 5 sodium_base642bin
sodium_base64_encoded_len
sodium_bin2base64
sodium_bin2hex
sodium_hex2bin

0
0
0

2.57E+05
0

core_ed25519
Implementation of the Edwards-curve Digital Signature Algo-
rithm [8].

2 19 crypto_core_ed25519_is_valid_point 0

crypto_scrypt-common
Utility and low-level API functions for the scrypt key deriva-
tion (hash) function [34].

5 5 escrypt_gensalt_r 0

pbkdf2-sha256
Implementation of the Password-Based Key Derivation Func-
tion 2 (PBKDF2) [27].

14 1 escrypt_PBKDF2_SHA256 0

pwhash_scryptsalsa208sha256
High-level API for the scrypt key derivation function [34].

8 19 crypto_pwhash_scryptsalsa208sha256 0

pwhash_scryptsalsa208sha256_nosse
Same as above, but does not use Streaming SIMD Extensions
(SSE).

32 3 escrypt_kdf_nosse
salsa20_8

0
0

randombytes
Pseudorandom number generators.

1 11 randombytes_uniform 5.61E+02

salsa20_ref
Contains a reference implementation of the Salsa20 stream
cipher [7].

12 2 stream_ref
stream_ref_xor_ic

1.14E+04
1.14E+05

scalarmult_ristretto255_ref10
Implementation of the Ristretto255 prime order elliptic curve
group [22].

29 4 scalarmult_ristretto255
scalarmult_ristretto255_base
scalarmult_ristretto255_scalarbytes

0
0
0

stream_chacha20
High-level API for the ChaCha20 stream cipher [8].

2 15 crypto_stream_chacha20
crypto_stream_chacha20_ietf
crypto_stream_chacha20_ietf_ext
crypto_stream_chacha20_ietf_ext_xor_ic
crypto_stream_chacha20_ietf_xor
crypto_stream_chacha20_ietf_xor_ic
crypto_stream_chacha20_xor
crypto_stream_chacha20_xor_ic

6.65E+02
3.19E+03
2.66E+03
1.68E+02
1.68E+02
2.32E+03

0
1.68E+02

verify
Functions used to compare secrets in constant time to avoid
timing attacks.

7 6 crypto_verify_16
crypto_verify_32
crypto_verify_64

2.69E+05
3.40E+03

0

Total 256 114 40 functions

TABLE II: Libsodium modules with at least one variant generated by CROW. The columns on the left include the facts about each
module. The first column contains the name and the functional description of the modules. The second column, #var (highlighted)
gives the number of unique variants generated by CROW. The third column, #func, lists the total amount of functions in each
module. The remaining columns include a list of functions that CROW has successfully diversified and the number of calls per
function in the test suite.

Table II presents the key results for these 15 successfully
diversified modules. The first two columns contain the name
and description of the diversified module, and, the number
of unique static variants. The other columns show the total
number of functions inside the module, the names of the
diversified functions and the number of calls to each function
in the considered tests.

Generation of WebAssembly library variants from WebAs-
sembly module variants. The successfully diversified modules
can be combined to obtain a large pool of different versions of
the packaged libsodium WebAssembly library. The Cartesian
product of all module variants produces in theory 1.66E+15
unique libsodium variants. Yet, it is unpractical to store and
execute this large number of variants. Thus, we sample the
pool of possible variants to evaluate our generated variants.
First, for each of the 256 modules, we rank each module
variant with respect to the number of lines changed in the

final WebAssembly textual format. Then, to produce the i-th
library variant, we combine the i-th variant for each module
of libsodium, in order to produce maximally diversified library
variants first. If a module has less than i variants, we use the
original, non-diversified module. According to Table II, the
maximum number of unique variants for a single module is
79 (codecs module). Thus, we sample 79 unique libsodium
variants, ordered by the amount of diversification (the first
variant contains the most changes, and so on). For each variant
we execute the complete test suite to validate its correctness.
All test cases successfully pass for all diversified library
binaries.

Dynamic evaluation of libsodium variants. We compare
the dynamic behaviour of the original libsodium and the
79 library variants. Figure 3 illustrates the distribution of
dt dyn of all collected traces for each libsodium test. The
dt dyn distance is calculated between each diversified trace

9

1

1

17

3

7

1

1

6

4

7

17

3

5

3

6

4

5

17

N
u

m
b

er
of

u
n

iq
u

e
va

ri
an

ts
fo

r
ea

ch
te

st

0.0 0.2 0.4 0.6 0.8 1.0

Normalized DTW distance

auth3

sodium utils3

scalarmult5

onetimeauth2

box easy

generichash2

stream3

box2

box

secretbox easy

scalarmult

stream4

aead xchacha20. . .

secretstream

secretbox2

secretbox

aead chacha20. . .

kdf

Fig. 3: Distribution of normalized dt dyn distances over the
set of libsodium variants covered by each test. The left Y axis
lists the name of each test. The number of unique variants used
per test is listed on the right Y axis. The black triangles point
to the dt dyn distance between two different stack operation
traces of the original test with different random seeds.

and the corresponding original trace for the same test. Each
horizontal bar gives the distribution of dt dyn over the 79
diversified libraries per test. The black triangles show the
dt dyn distance between two different executions of the same
test with different random seeds. They serve as a baseline to
compare the artificial diversity introduced by CROW, against
the natural trace diversity that appears because of random
number generation.

For 18/19 tests, we observe that CROW’s diversified
modules produce a different trace than the original. The wider
violin plots that reach the right-hand side of the figure include
variants that significantly diversify the test execution. We
observe that 4/18 tests stand out as they include variants with
at least 0.8 normalized dt dyn distance. For 6/18 tests, there
is a medium trace diversity as their dt dyn distributions lie in
the mid/left side of the plot. For the rest 8/18 tests we observe
a significantly smaller dt dyn distance.

This means that, in the context of this cryptographic library,
CROW is able to find variants that have a huge impact on the
dynamic stack behaviour of the program. Meanwhile, some
other replacements can have only a marginal impact during the
operation of the program. One factor that can affect this is the
“centrality” of the code that is being replaced. Diversified code
that is called often, potentially inside loops, will have a greater
impact on the stack trace of a program compared to code that
is only called, for example, only during the initialization of
the program.

When we compare the trace diversity against the diversity

due to pseudo-number generation (black triangles in Figure 3),
we observe that: for 2/18 tests CROW trace diversification is
always larger than the one due to random number generation,
for 11/18 tests there exist some variants that exhibit larger
trace diversification than random number generation and for
5/18 tests CROW trace diversification is always smaller than
the one due to random number generation.

Answer to RQ3

We have successfully applied CROW to libsodium, one
of the leading WebAssembly cryptography libraries.
We have shown that CROW is able to create statically
different variants of this real-world library, all of which
being distributable to users. Our original experiments
to measure the trace diversity of libsodium have proven
that the generated variants exhibit significantly differ-
ent execution traces compared to the original non-
diversified libsodium binary. The take-away of this
experiment is that CROW works on complex code.

VI. THREATS TO VALIDITY

Internal: The timeout in the exploration stage is a determi-
nant factor to generate unique variants. It is required to bound
the experimental time. If the timeout is increased, the number
of variants and unique variants might increase.

External: The 303 programs in our Rosetta corpus may not
reflect the constructs used in the WebAssembly programs in the
wild. Yet our experiment on libsodium shows that the results
on the Rosetta corpus hold on real code. To increase external
validity, we hope to see more benchmarks of WebAssembly
programs published by the research community.

Scale: We measure behavioral diversity with DTW. We are
aware that this behavioral diversity metric does not scale in-
finitely. To make comparisons between large execution traces,
it may be necessary to use a more scalable metric. To mitigate
this scale problem in future work, one option is to compare
software traces using entropy analysis, as proposed by Miran-
skyy et al. [33].

VII. RELATED WORK

Program diversification approaches can be applied at dif-
ferent stages of the development pipeline.

Static diversification: This kind of diversification consists
in synthesizing, building and distributing different, functionally
equivalent, binaries to end users. This aims at increasing the
complexity and applicability of an attack against a large popu-
lation of users [12]. Jackson et al. [24] argue that the compiler
can be placed at the heart of the solution for software diversi-
fication; they propose the use of multiple semantic-preserving
transformations to implement massive-scale software diversity
in which each user gets their own diversified variant. Dealing
with code-reuse attacks, Homescu et al. [23] propose inserting
NOP instruction directly in LLVM IR to generate a variant
with different code layout at each compilation. In this area,
Coppens et al. [13] use compiler transformations to iteratively
diversify software. The aim of their work is to prevent reverse
engineering of security patches for attackers targeting vulner-
able programs. Their approach, continuously applies a random

10

selection of predefined transformations using a binary diffing
tool as feedback. A downside of their method is that attackers
are, in theory, able to identify the type of transformations
applied and find a way to ignore or reverse them. Our work
can be extended to address this issue, providing a synthesizing
solution which is more general than specific transformations.

The work closest to ours is that by Jacob et al. [25].
These authors propose the use of a “superdiversification”
technique, inspired by superoptimization [32], to synthesize
individualized versions of programs. In the work of Massalin,
a superoptimizer aims to synthesize the shortest instruction
sequence that is equivalent to the original given sequence. On
the contrary, the tool developed by Jacob et al. does not output
only the shortest instruction sequence, but any sequences that
implement the input function. This work focuses on a specific
subset of X86 instructions. Meanwhile, our approach works
directly with LLVM IR, enabling it to generalize to more
languages and CPU architectures. Specifically, we apply our
tool on WebAssembly, something not possible with the X86-
specific approach of that paper.

Runtime diversification: Previous works have attempted to
generate diversified variants that are alternated during execu-
tion. It has been shown to drastically increase the number of
execution traces that a side-channel attack requires to succeed.
Amarilli et al. [3] are the first to propose generation of code
variants against side-channel attacks. Agosta et al. [1] and
Crane et al. [15] modify the LLVM toolchain to compile
multiple functionally equivalent variants to randomize the
control flow of software, while Couroussé et al. [14] implement
an assembly-like DSL to generate equivalent code at runtime
in order to increase protection against side-channel attacks.
CROW focuses on static diversification of software. However,
because of the specificities of code execution in the browser,
this is not far from being a dynamic approach. Since WebAs-
sembly is served at each page refreshment, every time a user
asks for a WebAssembly binary, she can be served a different
variant provided by CROW.

VIII. CONCLUSION

Security has been a major driver for the design of WebAs-
sembly. Diversification is one additional protection mechanism
that has been not yet realized for it. In this paper, we have
presented CROW, the first code diversification approach for
WebAssembly. We have shown that CROW is able to generate
variants for a large variety of programs, including a real-
world cryptographic library. Our original experiments have
comprehensively assessed the generated diversity: we have
shown that CROW generates diversity both among the binary
code variants as well as in the execution traces collected when
executing the variants. Also, we have successfully observed di-
verse execution traces for the considered cryptographic library,
which can protect it against a range of side channel attacks.

Future work includes increasing the number of unique
variants that are generated, by working on block replacement
overlapping detection. Also, the exploration stage and the
identification of code replacements is a highly parallelizable
process, this would increase diversification performance in
order to meet the demands of the internet scale.

REFERENCES

[1] G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale, “The MEET ap-
proach: Securing cryptographic embedded software against side channel
attacks,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 34, no. 8, pp. 1320–1333, 2015.

[2] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools. USA: Addison-Wesley Longman Publishing Co.,
Inc., 1986, ch. 1, pp. 28–31.

[3] A. Amarilli, S. Müller, D. Naccache, D. Page, P. Rauzy, and M. Tun-
stall, “Can code polymorphism limit information leakage?” in IFIP
International Workshop on Information Security Theory and Practices.
Springer, 2011, pp. 1–21.

[4] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein,
“BLAKE2: simpler, smaller, fast as MD5,” in International Conference
on Applied Cryptography and Network Security. Springer, 2013, pp.
119–135.

[5] B. Baudry and M. Monperrus, “The multiple facets of software diver-
sity: Recent developments in year 2000 and beyond,” ACM Computing
Surveys (CSUR), vol. 48, no. 1, pp. 1–26, 2015.

[6] D. J. Bernstein, “The ChaCha family of stream ciphers,” 2008.
[Online]. Available: http://cr.yp.to/chacha.html

[7] ——, “The Salsa20 family of stream ciphers,” in New stream cipher
designs. Springer, 2008, pp. 84–97.

[8] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of cryptographic engineering,
vol. 2, no. 2, pp. 77–89, 2012.

[9] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: new generation of
memory-hard functions for password hashing and other applications,” in
2016 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2016, pp. 292–302.

[10] J. Cabrera Arteaga, M. Monperrus, and B. Baudry, “Scalable compari-
son of javascript V8 bytecode traces,” in Proceedings of the 11th ACM
SIGPLAN International Workshop on Virtual Machines and Interme-
diate Languages. New York, NY, USA: Association for Computing
Machinery, 2019, p. 22–31.

[11] D. Chen and W3C group, “WebAssembly documentation:
Security,” W3C, Accessed: 18 June 2020. [Online]. Available:
https://webassembly.org/docs/security/

[12] F. B. Cohen, “Operating system protection through program evolution.”
Computers & Security, vol. 12, no. 6, pp. 565–584, 1993.

[13] B. Coppens, B. De Sutter, and J. Maebe, “Feedback-driven binary
code diversification,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 9, no. 4, pp. 1–26, 2013.

[14] D. Couroussé, T. Barry, B. Robisson, P. Jaillon, O. Potin, and J.-
L. Lanet, “Runtime code polymorphism as a protection against side
channel attacks,” in IFIP International Conference on Information
Security Theory and Practice. Springer, 2016, pp. 136–152.

[15] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz, “Thwart-
ing cache side-channel attacks through dynamic software diversity.” in
NDSS, 2015, pp. 8–11.

[16] A. Cui and S. J. Stolfo, “Symbiotes and defensive mutualism: Moving
target defense,” in Moving target defense. Springer, 2011, pp. 99–108.

[17] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340.

[18] F. Denis, “The Sodium cryptography library,” Jun 2013. [Online].
Available: https://download.libsodium.org/doc/

[19] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer
systems,” in Proceedings. The Sixth Workshop on Hot Topics in Oper-
ating Systems (Cat. No. 97TB100133). IEEE, 1997, pp. 67–72.

[20] R. Gurdeep Singh and C. Scholliers, “WARDuino: A dynamic WebAs-
sembly virtual machine for programming microcontrollers,” in Proceed-
ings of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes, ser. MPLR 2019, 2019, pp.
27–36.

[21] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
web up to speed with WebAssembly,” in Proceedings of the 38th

11

ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2017, pp. 185–200.

[22] M. Hamburg, H. de Valance, I. Lovecruft, and T. Arcieri, “The ristretto
group,” 2017.

[23] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-guided automated software diversity,” in Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE, 2013, pp. 1–11.

[24] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner,
A. Gal, S. Brunthaler, C. Wimmer, and M. Franz, “Compiler-generated
software diversity,” in Moving Target Defense. Springer, 2011, pp.
77–98.

[25] M. Jacob, M. H. Jakubowski, P. Naldurg, C. W. N. Saw, and R. Venkate-
san, “The superdiversifier: Peephole individualization for software pro-
tection,” in International Workshop on Security. Springer, 2008, pp.
100–120.

[26] S. Josefsson, “The Base16, Base32, and Base64 data encodings,”
Internet Requests for Comments, RFC Editor, RFC 4648, October
2006, http://www.rfc-editor.org/rfc/rfc4648.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4648.txt

[27] B. Kaliski, “PKCS #5: Password-based cryptography specification
version 2.0,” Internet Requests for Comments, RFC Editor, RFC 2898,
September 2000, http://www.rfc-editor.org/rfc/rfc2898.txt. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2898.txt

[28] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in 2014 IEEE Symposium on Security and Privacy,
2014, pp. 276–291.

[29] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14,
2014, p. 216–226.

[30] D. Lehmann, J. Kinder, and M. Pradel, “Everything old is new again:
Binary security of WebAssembly,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020.

[31] M. D. A. Maia, V. Sobreira, K. R. Paixão, R. A. D. Amo, and
I. R. Silva, “Using a sequence alignment algorithm to identify specific
and common code from execution traces,” in Proceedings of the 4th
International Workshop on Program Comprehension through Dynamic
Analysis (PCODA, 2008, pp. 6–10.

[32] H. Massalin, “Superoptimizer— A Look at the Smallest Program,” ACM
SIGPLAN Notices, vol. 22, no. 10, pp. 122–126, 10 1987.

[33] A. V. Miranskyy, M. Davison, R. M. Reesor, and S. S. Murtaza, “Using
entropy measures for comparison of software traces,” Information
Sciences, vol. 203, pp. 59–72, oct 2012.

[34] C. Percival, “Stronger key derivation via sequential memory-hard func-
tions,” 2009.

[35] P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhurjati, “Scaling
up superoptimization,” SIGARCH Comput. Archit. News, vol. 44, no. 2,
p. 297–310, Mar. 2016.

[36] A. Rossberg, “WebAssembly Core Specification,” W3C, Tech. Rep.,
Dec. 2019. [Online]. Available: https://www.w3.org/TR/wasm-core-1/

[37] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane,
C. Liebchen, P. Larsen, L. Davi, M. Franz, A.-R. Sadeghi, and
H. Okhravi, “Address oblivious code reuse: On the effectiveness of
leakage resilient diversity,” in NDSS, 2017.

[38] R. Sasnauskas, Y. Chen, P. Collingbourne, J. Ketema, G. Lup, J. Taneja,
and J. Regehr, “Souper: A Synthesizing Superoptimizer,” arXiv preprint
1711.04422, 2017.

[39] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks without
memory disclosures: Remote side channel attacks on diversified code,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, 2014, pp. 54–65.

[40] M. Taguinod, A. Doupé, Z. Zhao, and G.-J. Ahn, “Toward a mov-
ing target defense for web applications,” in 2015 IEEE International
Conference on Information Reuse and Integration. IEEE, 2015, pp.
510–517.

[41] C. Wang, J. Davidson, J. Hill, and J. Knight, “Protection of software-
based survivability mechanisms,” in Proc. of the Int. Conf. on Depend-
able Systems and Networks (DSN). IEEE, 2001, pp. 193–202.

[42] R. Zhuang, S. A. DeLoach, and X. Ou, “Towards a theory of moving
target defense,” in Proceedings of the First ACM Workshop on Moving
Target Defense, 2014, pp. 31–40.

12

MULTI-VARIANT EXECUTION AT THE
EDGE

Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, Benoit Baudry
Preprint version

Accepted at the Conference on Computer and Communications Security (CCS
2022), Moving Target Defense (MTD)

preprint link https://ui.adsabs.harvard.edu/abs/2021arXiv210808125C

81

https://ui.adsabs.harvard.edu/abs/2021arXiv210808125C

Multi-variant Execution at the Edge
JAVIER CABRERA-ARTEAGA, KTH Royal Institute of technology, Sweden
PIERRE LAPERDRIX, CNRS, France
MARTIN MONPERRUS, KTH Royal Institute of Technology, Sweden
BENOIT BAUDRY, KTH Royal Institute of Technology, Sweden

Edge-Cloud computing offloads parts of the computations that traditionally
occurs in the cloud to edge nodes. The binary format WebAssembly is
increasingly used to distribute and deploy services on such platforms. Edge-
Cloud computing providers let their clients deploy stateless services in
the form of WebAssembly binaries, which are then translated to machine
code, sandboxed and executed at the edge. In this context, we propose a
technique that (i) automatically diversifies WebAssembly binaries that are
deployed to the edge and (ii) randomizes execution paths at runtime. Thus,
an attacker cannot exploit all edge nodes with the same payload. Given a
service, we automatically synthesize functionally equivalent variants for the
functions providing the service. All the variants are then wrapped into a single
multivariant WebAssembly binary. When the service endpoint is executed,
every time a function is invoked, one of its variants is randomly selected. We
implement this technique in the MEWE tool and we validate it with 7 services
for which MEWE generates multivariant binaries that embed hundreds of
function variants. We execute the multivariant binaries on the world-wide
edge platform provided by Fastly, as part as a research collaboration. We show
that multivariant binaries exhibit a real diversity of execution traces across
the whole edge platform distributed around the globe.

Additional Key Words and Phrases: Diversification, Moving Target Defense,
Edge-Cloud computing, Multivariant execution, WebAssembly.

ACM Reference Format:
Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit
Baudry. 2022. Multi-variant Execution at the Edge. 1, 1 (August 2022), 12 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Edge-Cloud computing distributes a part of the data and computation
to edge nodes [20, 56]. Edge nodes are servers located in many
countries and regions so that Internet resources get closer to the
end users, in order to reduce latency and save bandwidth. Video and
music streaming services, mobile games, as well as e-commerce and
news sites leverage this new type of cloud architecture to increase the
quality of their services. For example, the New York Times website
was able to serve more than 2 million concurrent visitors during
the 2016 US presidential election with no difficulty thanks to Edge
computing [4].

Authors’ addresses: Javier Cabrera-Arteaga, javierca@kth.se, KTH Royal Institute of
technology, Sweden; Pierre Laperdrix, pierre.laperdrix@inria.fr, CNRS, France; Martin
Monperrus, martin.monperrus@kth.se, KTH Royal Institute of Technology, Sweden;
Benoit Baudry, baudry@kth.se, KTH Royal Institute of Technology, Sweden.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
XXXX-XXXX/2022/8-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

The state of the art of edge computing platforms like Cloudflare
or Fastly use the binary format WebAssembly (aka Wasm) [28, 57]
to deploy and execute on edge nodes. WebAssembly is a portable
bytecode format designed to be lightweight, fast and safe [17, 27].
After compiling code to a WebAssembly binary, developers spawn an
edge-enabled compute service by deploying the binary on all nodes
in an Edge platform. Thanks to its simple memory and computation
model, WebAssembly is considered safe [44], yet is not exempt of
vulnerabilities either at the execution engine’s level [54] or the
binary itself [38]. Implementations in both, browsers and standalone
runtimes [45], have been found to be vulnerable [38, 45]. This means
that if one node in an Edge network is vulnerable, all the others are
vulnerable in the exact samemanner. In other words, the same attacker
payload would break all edge nodes at once [46]. This illustrates how
Edge computing is fragile with respect to systemic vulnerabilities for
the whole network, like it happened on June 8, 2021 for Fastly [3].

In this work, we introduceMultivariant Execution forWebAssembly
in the Edge (MEWE), a framework that generates diversified
WebAssembly binaries so that no two executions in the edge network
are identical. Our solution is inspired by N-variant systems [23] where
diverse variants are assembled for secretless security. Here, our goal
is to drastically increase the effort for exploitation through large-scale
execution path randomization. MEWE operates in two distinct steps.
At compile time, MEWE generates variants for different functions
in the program. A function variant is semantically identical to the
original function but structurally different, i.e., binary instructions
are in different orders or have been replaced with equivalent ones. All
the function variants for one service are then embedded in a single
multivariant WebAssembly binary. At runtime, every time a function
is invoked, one of its variant is randomly selected. This way, the actual
execution path taken to provide the service is randomized each time
the service is executed, hardening Break-Once-Break-Everywhere
(BOBE) attacks.

We experiment MEWE with 7 services, composed of hundreds of
functions. We successfully synthesize thousands of function variants,
which create orders of magnitude more possible execution paths than
in the original service. To determine the runtime randomness of
the embedded paths, we deploy and run the mutlivariant binaries
on the Fastly edge computing platform (leading CDN platform).
We collaborated with Fastly to experiment MEWE on the actual
production edge computing nodes that they provide to their clients.
This means that all our experiments ran in a real-world setting. For
this experiment, we execute each multivariant binary several times
on every edge computing node provided by Fastly. Our experiment
shows that the multivariant binaries render the same service as the
original, yet with highly diverse execution traces.

The novelty of our contribution is as follows. First, we are the first
to perform software diversification in the context of edge computing,

, Vol. 1, No. 1, Article . Publication date: August 2022.

2 • Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry

with experiments performed on a real-world, large-scale, commercial
edge computing platform (Fastly). Second, very fewworks have looked
at software diversity for WebAssembly [18, 45], our paper contributes
to proving the feasibility of this challenging endeavour.

To sum up, our contributions are:

• MEWE: a framework that builds multivariant WebAssembly
binaries for edge computing, combining the automatic synthesis
of semantically equivalent function variants, with execution
path randomization.

• Original results on the large-scale diversification
of WebAssembly binaries, at the function and execution path
levels.

• Empirical evidence of the feasibility of deploying our novel
multivariant execution scheme on a real-world edge-computing
platform.

• A publicly available prototype system, shared for future
research on the topic: https://github.com/Jacarte/MEWE.

This work is structured as follows. First, Section 2 present
a background on WebAssembly and its usage in an edge-cloud
computing scenario. Section 3 introduces the architecture and
foundation of MEWE while Section 4 and Section 5 present the
different experiments we conducted to show the feasibility of our
approach. Section 6 details the RelatedWork while Section 7 concludes
this paper.

2 BACKGROUND
In this section we introduce WebAssembly, as well as the deployment
model that edge-cloud platforms such as Fastly provide to their clients.
This forms the technical context for our work.

2.1 WebAssembly
WebAssembly is a bytecode designed to bring safe, fast, portable
and compact low-level code on the Web. The language was first
publicly announced in 2015 and formalized by Haas et al. [27]. Since
then, most major web browsers have implemented support for the
standard. Besides the Web, WebAssembly is independent of any
specific hardware, which means that it can run in standalone mode.
This allows for the adoption of WebAssembly outside web browsers
[17], e.g., for edge computing [45].

int f(int x) {

return 2 * x + x;

}

Listing 1. C function that calculates the quantity 2𝑥 + 𝑥

(module

(type (;0;) (func (param i32) (result i32)))

(func (;0;) (type 0) (param i32) (result i32)

local.get 0

local.get 0

i32.const 2

i32.mul

i32.add)

(export "f" (func 0)))

Listing 2. WebAssembly code for Listing 1.

WebAssembly binaries are usually compiled from source code like
C/C++ or Rust. Listing 1 and 2 illustrate an example of a C function
turned into WebAssembly. Listing 1 presents the C code of one
function and Listing 2 shows the result of compiling this function into
aWebAssembly module. TheWebAssembly code is further interpreted
or compiled ahead of time into machine code.

2.2 Web Assembly and Edge Computing
Using Wasm as an intermediate layer is better in terms of startup and
memory usage, than containerization or virtualization [32, 44]. This
has encouraged edge computing platforms like Cloudflare or Fastly
to adopt WebAssembly to deploy client applications in a modular and
sandboxed manner [28, 57]. In addition, WebAssembly is a compact
representation of code, which saves bandwidth when transporting
code over the network .
Client applications that are designed to be deployed on edge-

cloud computing platforms are usually isolated services, having one
single responsibility. This development model is known as serverless
computing, or function-as-a-service [45, 53]. The developers of a client
application implement the isolated services in a given programming
language. The source code and the HTTP harness of the service are
then compiled to WebAssembly. When client application developers
deploy a WebAssembly binary, it is sent to all edge nodes in the
platform. Then, the WebAssembly binary is compiled on each node to
machine code. Each binary is compiled in a way that ensures that the
code runs inside an isolated sandbox.

2.3 Multivariant Execution
In 2006, security researchers of University of Virginia have laid the
foundations of a novel approach to security that consists in executing
multiple variants of the same program. They called this “N-variant
systems” [23]. This potent idea has been renamed soon after as
“multivariant execution”.

There is a wide range of realizations of MVE in different contexts.
Bruschi et al. [16] and Salamat et al. [50] pioneered the idea of
executing the variants in parallel. Subsequent techniques focus on
MVE for mitigating memory vulnerabilities [31, 41] and other specific
security problems including return-oriented programming attacks
[58] and code injection [52]. A key design decision of MVE is whether
it is achieved in kernel space [47], in user-space [51], with exploiting
hardware features [36], or even throught code polymorphism [10].
Finally, one can neatly exploit the limit case of executing only two
variants [35, 43]. The body of research on MVE in a distributed setting
has been less researched. Notably, Voulimeneas et al. proposed a
multivariant execution system by parallelizing the execution of the
variants in different machines [59] for sake of efficiency.

In this paper, we propose an original kind of MVE in the context of
edge computing. We generate multiple program variants, which we
execute on edge computing nodes. We use the natural redundancy
of Edge-Cloud computing architectures to deploy an internet-based
MVE. Next section goes into the details of our procedure to generate
variants and assemble them into multivariant binaries.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Multi-variant Execution at the Edge • 3

3 MEWE: MULTIVARIANT EXECUTION FOR EDGE
COMPUTING

In this section we present MEWE, a novel technique to synthesize
multivariant binaries and deploy them on an edge computing platform.

3.1 Overview
The goal of MEWE is to synthesize multivariant WebAssembly
binaries, according to the threat model presented in Section 3.2.1.
The tool generates application-level multivariant binaries, without
any change to the operating system or WebAssembly runtime. The
core idea of MEWE is to synthesize diversified function variants
providing execution-path randomization, according to the diversity
model presented in Section 3.2.2.

In Figure 1, we summarize the analysis and transformation pipeline
of MEWE. We pass a bitcode to be diversified, as an input to MEWE.
Analysis and transformations are performed at the level of LLVM’s
intermediate representation (LLVM IR), as it is the best format for us
to perform our modifications (see Section 3.2.3). LLVM binaries can be
obtained from any language with an LLVM frontend such as C/C++,
Rust or Go, and they can easily be compiled to WebAssembly. In
Step 1 , the binary is passed to CROW [18], which is a superdiversifier
forWasm that generates a set of variants for the functions in the binary.
Step 2 packages all the variants in one single multivariant LLVM
binary. In Step 3 , we use a special component, called a “mixer”,
which augments the binary with two different components: an HTTP
endpoint harness and a random generator, which are both required
for executing Wasm at the edge. The harness is used to connect the
program to its execution environment while the generator provides
support for random execution path at runtime. The final output of
Step 4 is a standalone multivariant WebAssembly binary that can
be deployed on an edge-cloud computing platform. In the following
sections, we describe in greater details the different stages of the
workflow.

3.2 Key design choices
In this section, we introduce the main design decisions behind MEWE,
starting from the threat model, to aligning the code analysis and
transformation techniques.

3.2.1 Threat Model. As we describe in Section 2.2, to benefit from the
performance improvements offered by edge computing, developers
modularize their services into a set of WebAssembly functions. The
binaries are then deployed on all the nodes provided by the edge
computing platforms. However, this model of distributing the exact
same WebAssembly binary on hundreds of computation nodes is a
serious risk for the infrastructure: a malicious developer who manages
to exploit one vulnerability in one edge location can exploit all the
other locations with the same attack vector.
With MEWE, we aim to defend against an attacker that perform

BOBE attacks. These attacks include but are not limited to timing
specific operations [6, 11], counting register spill/reload operations
to study and exploit memory [48] and performing call stack analysis.
They can be performed either locally or remotely by finding a
vulnerability or using shared resources in the case of a multi-tenant
Edge computing server but the details of such exploitation are out of
scope of this study.

3.2.2 Execution Diversification Model. MEWE is
designed to randomize the execution of WebAssembly programs, via
diversification transformations. Per Crane et al. those transformations
are made to hinder side-channel attacks [24]. All programs are
diversified with behavior preservation guarantees [18]. The core
diversification strategies are: (1) Constant Inferring. MEWE identifies
variables whose value can computed at compile time and are used to
control branches. This has an effect on program execution times [15].
(2) Call Stack Randomization. MEWE introduces equivalent synthetic
functions that are called randomly. This results in randomized call
stacks, which complicates attacks based on call stack analysis [40].
(3) Inline Expansion. MEWE inlines methods when appropriate. This
also results in different call stacks, to hinder the same kind of attacks
as for call stack randomization [40]. (4) Spills/Reloads. By performing
semantically equivalent transformations for arithmetic expressions,
the number of register spill/reload operations changes. Therefore, this
changes the memory accesses in the machine code that is executed,
affecting the measurement of memory side-channels [48].

3.2.3 Diversification at the LLVM level. MEWE diversifies programs
at the LLVM level. Other solutions would have been to diversify
at the source code level [8], or at the native binary level, eg x86
[22]. However, the former would limit the applicability of our work.
The latter is not compatible with edge computing: the top edge
computing execution platforms, e.g. Cloudflare and Fastly, mostly
take WebAssembly binaries as input.
LLVM, on the contrary, does not suffer from those limitations: 1)

it supports different languages, with a rich ecosystem of frontends
2) it can reliably be retargeted to WebAssembly, thanks to the
corresponding mature component in the LLVM toolchain.

3.3 Variant generation
MEWE relies on the superdiversifier CROW [18] to automatically
diversify each function in the input LLVM binary (Step 1). CROW
receives an LLVM module, analyzes the binary at the function block
level and generates semantically equivalent variants for each function,
if they exist. A function variant for MEWE is semantically equivalent
to the original (i.e., same input/output behavior), but exhibits a
different internal behavior through tracing. Since the variants created
by CROW are artificially synthesized from the original binary, after
Step 1 , they are necessarily equivalent to the original program.

3.4 Combining variants into multivariant functions
Step 2 of MEWE consists in combining the variants generated for
the original functions, into into a single binary. The goal is to support
execution-path randomization at runtime. The core idea is to introduce
one dispatcher function per original function for which we generate
variants. A dispatcher function is a synthetic function that is in charge
of choosing a variant at random, every time the original function is
invoked during the execution. The random invocation of different
variants at runtime is a known randomization technique, for example
used by Lettner et al. with sanitizers [39].
With the introduction of dispatcher function, MEWE turns the

original call graph into a multivariant call graph, defined as follows.

, Vol. 1, No. 1, Article . Publication date: August 2022.

4 • Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry

LLVM Original
binary

function1

functionn

CROW

function1function1function1function1

function1function1function1
functionn

Multivariant
Generation

LLVM Multivariant
binary

function1function1function1functionn

function1function1function1function1

Random
generator

HTTP endpoint
harness

MIXER
Wasm

multivariant
binary

1 2

34

Fig. 1. Overview of MEWE. It takes as input the LLVM binary representation of a service composed of multiple functions. It first generates a set of functionally
equivalent variants for each function in the binary and then generates a LLVM multivariant binary composed of all the function variants as well as dispatcher
functions in charge of selecting a variant when a function is invoked. The MEWE mixer composes the LLVM multivariant binary with a random number generation
library and an edge specific HTTP harness, in order to produce a WebAssembly multivariant binary accessible through an HTTP endpoint and ready to be deployed
to the edge.

Fig. 2. Example of two static call graphs for the bin2base64 endpoint of
libsodium. At the top, the original call graph, at the bottom, the multivariant
call graph, which includes nodes that represent function variants (in grey),
dispatchers (in green), and original functions (in yellow).

Definition 1. Multivariant Call Graph (MCG): A multivariant call
graph is a call graph ⟨𝑁, 𝐸⟩ where the nodes in 𝑁 represent all the
functions in the binary and an edge (𝑓1, 𝑓2) ∈ 𝐸 represents a possible
invocation of 𝑓2 by 𝑓1 [49], where the nodes are typed. The nodes in 𝑁
have three possible types: a function present in the original program, a
generated function variant, or a dispatcher function.

In Figure 2, we show the original static call graph for program
bin2base64 (top of the figure), as well as the multivariant call graph
generated with MEWE (bottom of the figure). The grey nodes
represent function variants, the green nodes function dispatchers
and the yellow nodes are the original functions. The possible calls are
represented by the directed edges. The original bin2base64 includes 3
functions. MEWE generates 43 variants for the first function, none
for the second and three for the third function. MEWE introduces two
dispatcher nodes, for the first and third functions. Each dispatcher is
connected to the corresponding function variants, in order to invoke
one variant randomly at runtime.

The right most green node of Figure 2 is a function constructed as
follows (See code in Appendix A). The function body first calls the
random generator, which returns a value that is then used to invoke a

specific function variant. It should be noted that the dispatcher func-
tion is constructed using the same signature as the original function.
We implement the dispatchers with a switch-case structure to

avoid indirect calls that can be susceptible to speculative execution
based attacks [45]. The choice of a switch-case also avoids having
multiple function definitions with the same signature, which could
increase the attack surface in case the function signature is vulnerable
[33]. This also allows MEWE to inline function variants inside the
dispatcher, instead of defining them again. Here we trade security
over performance, since dispatcher functions that perform indirect
calls, instead of a switch-case, could improve the performance of the
dispatchers as indirect calls have constant time.
3.5 MEWE’s Mixer
The MEWE mixer has four specific objectives: wrap functions as
HTTP endpoints, link the LLVM multivariant binary, inject a ran-
dom generator and merge all these components into a multivariant
WebAssembly binary.

We use the Rustc compiler1 to orchestrate the mixing. For the
generator, we rely onWASI’s specification [5] for the random behavior
of the dispatchers. Its exact implementation is dependent on the
platform on which the binary is deployed. For the HTTP harnesses,
since our edge computing use case is based on the Fastly infrastructure,
we rely on the Fastly API2 to transform our Wasm binaries into HTTP
endpoints. The harness enables a function to be called as an HTTP
request and to return a HTTP response. Throughout this paper, we
refer to an endpoint as the closure of invoked functions when the
entry point of the WebAssembly binary is executed.

3.6 Implementation
The multivariant combination (Step 2) is implemented in 942
lines of C++ code. Its uses the LLVM 12.0.0 libraries to extend the
LLVM standard linker tool capability with the multivariant generation.

1https://doc.rust-lang.org/rustc/what-is-rustc.html
2https://docs.rs/crate/fastly/0.7.3

, Vol. 1, No. 1, Article . Publication date: August 2022.

Multi-variant Execution at the Edge • 5

MEWE’s Mixer (Step 3) is implemented as an orchestration of
the rustc and the WebAssembly backend provided by CROW. An
instantiation of how the multivariant binary works can be appreciated
at Appendix B. For sake of open science and for fostering research on
this important topic, the code of MEWE is made publicly available on
GitHub: https://github.com/Jacarte/MEWE.

4 EXPERIMENTAL METHODOLOGY
In this section we introduce our methodology to evaluate MEWE. First,
we present our research questions and the services with which we
experiment the generation and the execution of multivariant binaries.
Then, we detail the methodology for each research question.

4.1 Research questions
To evaluate the capabilities of MEWE, we formulate the following
research questions:
RQ1: (Multivariant Generation) How much diversity can

MEWE synthesize and embed in a multivariant binary
?MEWE packages function variants in multivariant binaries.
With this first question, we aim at measuring the amount of
diversity that MEWE can synthesize in the call graph of a
program.

RQ2: (Intra MVE) To what extent does MEWE achieve multi-
variant executions on an edge compute node? With this
question we assess the ability of MEWE to produce binaries
that actually exhibit random execution paths when executed
on one edge node.

RQ3: (Internet MVE) To what extent does MEWE achieve
multivariant execution over the worldwide Fastly in-
frastructure? We check the diversity of execution traces
gathered from the execution of a multivariant binary. The
traces are collected from all edge nodes in order to assess MVE
at a worldwide scale.

RQ4: What is the impact of the proposed multi-version exe-
cution on timing side-channels?MEWE generates binaries
that embed a multivariant behavior. We measure to what
extent MEWE generates different execution times on the edge.
Then, we discuss how multivariant binaries contribute to less
predictable timing side-channels.

The core of the validation methodology for our tool MEWE, consists
in building multivariant binaries for several, relevant endpoints and
to deploy and execute them on the Fastly edge-cloud platform.

4.2 Study subjects
We select two mature and typical edge-cloud computing projects to
study the feasibility of MEWE. The projects are selected based on:
suitability for diversity synthesis with CROW (the projects should
have the ability to collect their modules in LLVM intermediate rep-
resentation), suitability for deployment on the Fastly infrastructure
(the project should be easily portable Wasm/WASI and compatible
with the Rust Fastly API), low chances to hit execution paths with no
dispatchers and possibility to collect their execution runtime informa-
tion (the endpoints should execute in a reasonable time of maximum
1 second even with the overhead of instrumentation). The selected
projects are: libsodium, an encryption, decryption, signature and

password hashing library which can be ported to WebAssembly and
qrcode-rust, a QrCode and MicroQrCode generator written in Rust.

Name #Endpoints #Functions #Instr.
libsodium 5 62 6187
https://github.com/
jedisct1/libsodium
qrcode-rust 2 1840 127700
https://github.com/
kennytm/qrcode-rust

Table 1. Selected projects to evaluate MEWE: project name; the number
of endpoints in the project that we consider for our experiments, the total
number of functions to implement the endpoints, and the total number of
WebAssembly instructions in the original binaries.

In Table 1, we summarize some key metrics that capture the
relevance of the selected projects. The table shows the project name
with its repository address, the number of selected endpoints for
which we build multivariant binaries, the total number of functions
included in the endpoints and the total number of Wasm instructions
in the original binary. Notice that, the metadata is extracted from
the Wasm binaries before they are sent to the edge-cloud computing
platform, thus, the number of functions might be not the same in the
static analysis of the project source code

4.3 Experiment’s platform
We run all our experiments on the Fastly edge computing platform.
We deploy and execute the original and the multivariant endpoints
on 64 edge nodes located around the world3. These edge nodes
usually have an arbitrary and heterogeneous composition in terms
of architecture and CPU model. The deployment procedure is the
same as the one described in Section 2.2. The developers implement
and compile their services to WebAssembly. In the case of Fastly,
the WebAssembly binaries need to be implemented with the Fastly
platform API specification so they can properly deal with HTTP
requests. When the compiled binary is transmitted to Fastly, it is
translated to x86 machine code with Lucet, which ensures the isolation
of the service.

4.4 RQ1 Multivariant diversity
We run MEWE on each endpoint function of our 7 endpoints. In this
experiment, we bound the search for function variant with timeout
of 5 minutes per function. This produces one multivariant binary for
each endpoint. To answer RQ1, we measure the number of function
variants embedded in each multivariant binary, as well as the number
of execution paths that are added in themutivariant call graphs, thanks
to the function variants.

4.5 RQ2 Intra MTD
We deploy the multivariant binaries of each of the 7 endpoints
presented in Table 2, on the 64 edge nodes of Fastly. We execute
each endpoint, multiple times on each node, to measure the diversity
of execution traces that are exhibited by the multivariant binaries.
We have a time budget of 48 hours for this experiment. Within this
3The number of nodes provided in the whole platform is 72, we decided to keep only the
64 nodes that remained stable during our experimentation.

, Vol. 1, No. 1, Article . Publication date: August 2022.

6 • Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry

timeframe, we can query each endpoint 100 times on each node. Each
query on the same endpoint is performed with the same input value.
This is to guarantee that, if we observe different traces for different
executions, it is due to the presence of multiple function variants. The
input values are available as part of our reproduction package.

For each query, we collect the execution trace , i.e., the sequence of
function names that have been executed when triggering the query.
To observe these traces, we instrument the multivariant binaries to
record each function entrance.

To answer RQ2, we measure the number of unique execution traces
exhibited by each multivariant binary, on each separate edge node. To
compare the traces, we hash them with the sha256 function. We then
calculate the number of unique hashes among the 100 traces collected
for an endpoint on one edge node. We formulate the following
definitions to construct the metric for RQ3.

Metric 1. Unique traces: 𝑅(𝑛, 𝑒). Let 𝑆 (𝑛, 𝑒) = {𝑇1,𝑇2, ...,𝑇100} be
the collection of 100 traces collected for one endpoint 𝑒 on an edge node
𝑛, 𝐻 (𝑛, 𝑒) the collection of hashes of each trace and 𝑈 (𝑛, 𝑒) the set of
unique trace hashes in 𝐻 (𝑛, 𝑒). The uniqueness ratio of traces collected
for edge node 𝑛 and endpoint 𝑒 is defined as

𝑅 (𝑛, 𝑒) = |𝑈 (𝑛, 𝑒) |
|𝐻 (𝑛, 𝑒) |

The inputs that we pass to execute the endpoints at the edge and
the received output for all executions are available in the reproduction
repository at https://github.com/Jacarte/MEWE.

4.6 RQ3 Inter MTD
We answer RQ3 by calculating the normalized Shannon entropy for all
collected execution traces for each endpoint. We define the following
metric.

Metric 2. Normalized Shannon entropy: 𝐸 (𝑒) Let 𝑒 be an endpoint,
𝐶 (𝑒) = ·64𝑛=0𝐻 (𝑛, 𝑒) be the union of all trace hashes for all edge nodes.
The normalized Shannon Entropy for the endpoint 𝑒 over the collected
traces is defined as:

𝐸 (𝑒) = −Σ 𝑝𝑥 ∗ 𝑙𝑜𝑔 (𝑝𝑥)
𝑙𝑜𝑔 (|𝐶 (𝑒) |)

Where 𝑝𝑥 is the discrete probability of the occurrence of the hash 𝑥
over 𝐶 (𝑒).
Notice that we normalize the standard definition of the Shannon

Entropy by using the perfect case where all trace hashes are different.
This normalization allows us to compare the calculated entropy
between endpoints. The value of the metric can go from 0 to 1. The
worst entropy, value 0, means that the endpoint always perform the
same path independently of the edge node and the number of times
the trace is collected for the same node. On the contrary, 1 for the
best entropy, when each edge node executes a different path every
time the endpoint is requested.
The Shannon Entropy gives the uncertainty in the outcome of a

sampling process. If a specific trace has a high frequency of appearing
in part of the sampling, then it is certain that this trace will appear in
the other part of the sampling.

We calculate the metric for the 7 endpoints, for 100 traces collected
from 64 edge nodes, for a total of 6400 collected traces per endpoint.
Each trace is collected in a round robin strategy, i.e., the traces are
collected from the 64 edge nodes sequentially. For example, we collect

the first trace from all nodes before continuing to the collection of the
second trace. This process is followed until 100 traces are collected
from all edge nodes.

4.7 RQ4 Timing side-channels
For each endpoint listed in Table 2, we measure the impact of MEWE
on timing. For this, we use the following metric:

Metric 3. Execution time: For a deployed binary on the edge, the
execution time is the time spent on the edge to execute the binary.

Note that edge-computing platforms are, by definition, reached
from the Internet. Consequently, there may be latency in the timing
measurement due to round-trip HTTP requests. This can bias the
distribution of measured execution times for the multivariant binary.
To avoid this bias, we instrument the code to only measure the
execution on the edge nodes.
We collect 100k execution times for each binary, both the original

and multivariant binaries. We perform a Mann-Withney U test [42]
to compare both execution time distributions. If the P-value is lower
than 0.05, two compared distributions are different.

5 EXPERIMENTAL RESULTS

5.1 RQ1 Results: Multivariant generation
We use MEWE to generate a multivariant binary for each of the 7
endpoints included in our 2 study subjects. We then calculate the
number of diversified functions, in each endpoint, as well as how they
combine to increase the number of possible execution paths in the
static call graph for the original and the multivariant binaries.
The sections ’Original binary’ and ’Multivariant WebAssembly

binary’ of Table 2 summarize the key data for RQ1. In the ’Original
binary’ section, the first column (#F) gives the number of functions in
the original binary and the second column (#Paths) gives the number
of possible execution paths in the original static call graph. The
’Multivariant WebAssembly binary’ section first shows the number
of each type of nodes in the multivariant call graph: #Non div. is
the number of original functions that could not be diversified by
MEWE, #D is the number of dispatcher nodes generated by MEWE
for each function that was successfully diversified, and #V is the total
number of function variants generated by MEWE. The last column
of this section is the number of possible execution paths in the static
multivariant call graph.

For all 7 endpoints, MEWE was able to diversify several functions
and to combine them in order to increase the number of possible ex-
ecution paths in several orders of magnitude. For example, in the case
of the encrypt function of libsodium, the original binary contains 23
functions that can be combined in 4 different paths. MEWE generated
a total of 56 variants for 5 of the 23 functions. These variants, combined
with the 18 original functions in the multivariant call graph, form
325 execution paths. In other words, the number of possible ways to
achieve the same encryption function has increased from 4 to 325, in-
cluding dispatcher nodes that are in charge of randomizing the choice
of variants at 5 different locations of the call graph. This increased
number of possible paths, combined with random choices, made at
runtime, increases the effort a potential attacker needs to guess what
variant is executed and hence what vulnerability she can exploit.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Multi-variant Execution at the Edge • 7

Original binary Multivariant WebAssembly binary
Endpoint #F #Paths #Non D #D #V #Paths
libsodium
encrypt 23 4 18 5 56 325
decrypt 20 3 16 5 49 84
random 8 2 6 2 238 12864
invert 8 2 6 2 125 2784
bin2base64 3 2 1 2 47 172
qrcode-rust
qr_str 982 688∗106 965 17 2092 97∗1012
qr_image 858 1.4∗106 843 15 2063 3∗109

Table 2. Static diversity generated by MEWE, measured on the static call
graphs of the WebAssembly binaries, and the preservation of this diversity
after translation to machine code. The table is structured as follows: Endpoint
name; number of functions and numbers of possible paths in the original
WebAssembly binary call graph; number of non diversified functions, number
of created dispatchers (one per diversified functions), total number of function
variants and number of execution paths in the multivariant WebAssembly
binary call graph.

We have observed that there is no linear correlation between the
number of diversified functions, the number of generated variants
and the number of execution paths. We have manually analyzed the
endpoint with the largest number of possible execution paths in the
multivariant Wasm binary: qr_str of qrcode-rust. MEWE generated
2092 function variants for this endpoint. Moreover, MEWE inserted
17 dispatchers in the call graph of the endpoint. For each dispatcher,
MEWE includes between 428 and 3 variants. If the original execution
path contains function for which MEWE is able to generate variants,
then, there is a combinatorial explosion in the number of execution
paths for the generated Wasm multivariant module. The increase of
the possible execution paths theoretically augments the uncertainty
on which one to perform, in the latter case, approx. 140 000 times. As
Cabrera and colleagues observed [18] for CROW, a large presence of
loops and arithmetic operations in the original function code leverages
to more diversification.
Looking at the #D (#Dispatchers) and #V (#Variants) columns of

the ’Multivariant WebAssembly binary’ section of Table 2, we notice
that the number of variants generated per function greatly varies.
For example, for both the invert and the bin2base64 functions of
Libsodium, MEWE manages to diversify 2 functions (reflected by the
presence of 2 dispatcher nodes in the multivariant call graph). Yet,
MEWE generates a total of 125 variants for the 2 functions in invert,
and only 47 variants for the 2 functions in bin2base64. The main
reason for this is related to the complexity of the diversified functions,
which impacts the opportunities for the synthesis of code variations.

Columns #Non D of the ’Multivariant WebAssembly binary’ section
of Table 2 indicates that, in each endpoint, there exists a number of
functions for which MEWE did not manage to generate variants.
We identify three reasons for this, related to the diversification
procedure of CROW, used by MEWE to diversify individual functions.
First, some functions cannot be diversified by CROW, e.g., functions
that wrap only memory operations, which are oblivious to CROW
diversification technique. Second, the complexity of the function
directly affects the number of variants that CROW can generate.
Third, the diversification procedure of CROW is essentially a search
procedure, which results are directly impacted by the tie budget for
the search. In all experiments we give CROW 5 minutes maximum to
synthesize function variants, which is a low budget for many functions.
It is important to notice that, the successful diversification of some
functions in each endpoint, and their combination within the call

graph of the endpoint, dramatically increases the number of possible
paths that can triggered for multivariant executions.
Answer to RQ1: MEWE dramatically increases the number
of possible execution paths in the multivariant WebAssembly
binary of each endpoint. The large number of possible execution
paths, combined with multiple points of random choice in the
multivariant call graph thwart the prediction of which path will
be taken at runtime.

5.2 RQ2 Results: Intra MTD
To answer RQ2, we execute the multivariant binaries of each endpoint,
on the Fastly edge-cloud infrastructure. We execute each endpoint
100 times on each of the 64 Fastly edge nodes. All the executions of
a given endpoint are performed with the same input. This allows us
to determine if the execution traces are different due to the injected
dispatchers and their random behavior. After each execution of an
endpoint, we collect the sequence of invoked functions, i.e., the
execution trace. Our intuition is that the random dispatchers combined
with the function variants embedded in a multivariant binary are very
likely to trigger different traces for the same execution, i.e., when
an endpoint is executed several times in a row with the same input
and on the same edge node. The way both the function variants and
the dispatchers contribute to exhibiting different execution traces is
illustrated in Figure 6.

Figure 3 shows the ratio of unique traces exhibited by each endpoint,
on each of the 64 separate edge nodes. The X corresponds to the edge
nodes. The Y axis gives the name of the endpoint. In the plot, for a
given (x,y) pair, there is blue point in the Z axis representing Metric 1
over 100 execution traces.

For all edge nodes, the ratio of unique traces is above 0.38. In 6 out
of 7 cases, we have observed that the ratio is remarkably high, above
0.9. These results show that MEWE generates multivariant binaries
that can randomize execution paths at runtime, in the context of an
edge node. The randomization dispatchers, associated to a significant
number of function variants greatly reduce the certainty about which
computation is performed when running a specific input with a given
input value.
Let’s illustrate the phenomenon with the endpoint invert. The

endpoint invert receives a vector of integers and returns its inversion.
Passing a vector of integers with 100 elements as input, 𝐼 = [100, ..., 0],
results in output 𝑂 = [0, ..., 100]. When the endpoint executes 100
times with the same input on the original binary, we observe 100
times the same execution trace. When the endpoint is executed 100
times with the same input 𝐼 on the multivariant binary, we observe
between 95 and 100 unique execution traces, depending on the edge
node. Analyzing the traces we observe that they include only two
invocations to a dispatcher, one at the start of the trace and one at the
end. The remaining events in the trace are fixed each time the endpoint
is executed with the same input 𝐼 . Thus, the maximum number of
possible unique traces is the multiplication of the number of variants
for each dispatcher, in this case 29 × 96 = 2784 . The probability of
observing the same trace is 1/2784.
For multivariant binaries that embed only a few variants, like in

the case of the bin2base64 endpoint, the ratio of unique traces per
node is lower than for the other endpoints. With the input we pass to

, Vol. 1, No. 1, Article . Publication date: August 2022.

8 • Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry

Edge nodes

n0
n1

n2
n3

n4
n5

n6
n7

n8
n9

n10
n11

n12
n13

n14
n15

n16
n17

n18
n19

n20
n21

n22
n23

n24
n25

n26
n27

n28
n29

n30
n31

n32
n33

n34
n35

n36
n37

n38
n39

n40

n41

n42

n43

n44

n45

n46

n47

n48

n49

n50

n51

n52

n53

n54

n55

n56

n57

n58

n59

n60

n61

n62

n63 bin2base64

decrypt

encrypt

.invert

random

qr str

qr image

U
n

iq
u

e
tr

ac
es

ra
ti

o

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Fig. 3. Ratio of unique execution traces for each endpoint on each edge node.
The X axis illustrates the edge nodes. The Y axis annotates the name of the
endpoint. In the plot, for a given (x,y) pair, there is blue point representing the
Metric 1 value in a set of 100 collected execution traces.

bin2base64, the execution trace includes 57 function calls. We have
observed that, only one of these calls invokes a dispatcher, which
can select among 41 variants. Thus, probability of having the same
execution trace twice is 1/41.
Meanwhile, qr_str embeds thousands of variants, and the input

we pass triggers the invocation of 3M functions, for which 210666
random choices are taken relying on 17 dispatchers. Consequently,
the probability of observing the same trace twice is infinitesimal.
Indeed, all the executions of qr_str are unique, on each separate
edge node. This is shown in Figure 3, where the ratio of unique traces
is 1 on all edge nodes.
Answer to RQ2: Repeated executions of a multivariant binary
with the same input on an individual edge node exhibits diverse
execution traces. MEWE successfully synthesizes multivariant
binaries that trigger diverse execution paths at runtime, on
individual edge nodes.

5.3 RQ3 Results: Internet MTD
To answer RQ3, we build the union of all the execution traces collected
on all edge nodes for a given endpoint. Then, we compute the
normalized Shannon Entropy over this set for each endpoint (Metric 2).
Our goal is to determine whether the diversity of execution traces
we observed on individual nodes in RQ3, actually generalizes to the
whole edge-cloud infrastructure. Depending on many factors, such
as the random number generator or a bug in the dispatcher, it could
happen that we observe different traces on individual nodes, but that
the set of traces is the same on all nodes. With RQ4 we assess the
ability of MEWE to exhibit multivariant execution at a global scale.

Table 3 provides the data to answer RQ3. The second column gives
the normalized Shannon Entropy value (Metric 2). Columns 3 and 4
give the median and the standard deviation for the length of the exe-
cution traces. Columns 5 and 6 give the number of dispatchers that are
invoked during the execution of the endpoint (#ED) and the total num-
ber of invocations of these endpoints (#Rch). These last two columns
indicate to what extent the execution paths are actually randomized
at runtime. In the cases of invert and random, both have the same

Endpoint Entropy MTL 𝜎 #ED #RCh
libsodium
encrypt 0.87 816 0 5 4M
decrypt 0.96 440 0 5 2M
random 0.98 15 5 2 12800
invert 0.87 7343 0 2 12800
bin2base64 0.42 57 0 1 6400
qrcode-rust
qr_str 1.00 3045193 0 17 1348M
qr_image 1.00 3015450 0 15 1345M

Table 3. Execution trace diversity over the Fastly edge-cloud computing
platform. The table is formed of 6 columns: the name of the endpoint, the
normalized Shannon Entropy value (Metric 2), the median size of the execution
traces (MTL), the standard deviation for the trace lengths the number of
executed dispatchers (#ED) and the number of total random choices taken
during all the 6400 executions (#RCh).

number of taken random choices. However, the number of variants to
chose in random are larger, thus, the entropy, is larger than invert.
Overall, the normalized Shannon Entropy is above 42%. This is

evidence that the multivariant binaries generated by MEWE can
indeed exhibit a high degree of execution trace diversity, while keeping
the same functionality. The number of randomization points along
the execution paths (#Rch) is at the core of these high entropy values.
For example, every execution of the encrypt endpoint triggers 4M
random choices among the different function variants embedded in
the multivariant binaries. Such a high degree of randomization is
essential to generate very diverse execution traces.
The bin2base64 endpoint has the lowest level of diversity. As

discussed in RQ2, this endpoint is the one that has the least variants
and its execution path can be randomized only at one point. The low
level of unique traces observed on individual nodes is reflected at the
system wide scale with a globally low entropy.

For both qr_str and qr_image the entropy value is 1.0. This means
that all the traces that we observe for all the executions of these
endpoints are different from each other. In other words, someone
who runs these services over and over with the same input cannot
know exactly what code will be executed in the next execution. These
very high entropy values are made possible by the millions of random
choices that are made along the execution paths of these endpoints.

While there is a high degree of diversity among the traces exhibited
by each endpoint, they all have the same length, except in the case
of random. This means that the entropy is a direct consequence of
the invocations of the dispatchers. In the case of random, it naturally
has a non-deterministic behavior. Meanwhile, we observe several
calls to dispatchers in during the execution of the multivariant
binary, which indicates that MEWE can amplify the natural diversity
of traces exhibited by random. For each endpoint, we managed to
trigger all dispatchers during its execution. There is a correlation
between the entropy and the number of random choices (Column
#RChs) taken during the execution of the endpoints. For a high
number of dispatchers, and therefore random choices, the entropy
is large, like the cases of qr_str and qr_image show. The contrary
happens to bin2base64 where its multivariant binary contains only
one dispatcher.

, Vol. 1, No. 1, Article . Publication date: August 2022.

Multi-variant Execution at the Edge • 9

Original bin. Multivariant Wasm
Endpoint Median (𝜇s) 𝜎 Median (𝜇s) 𝜎

libsodium
encrypt 7 5 217 43
decrypt 13 6 225 47
random 16 7 232 53
invert 119 34 341 65
bin2base64 10 5 215 35
qrcode-rust
qr_str 3,117 418 492,606 36,864
qr_image 3,091 412 512,669 41,718

Table 4. Execution time distributions for 100k executions, for the original
endpoints and their correspondingmultivariants. The table is structured in two
sections. The first section shows the endpoint name, themedian execution time
and its standard deviation for the original endpoint. The second section shows
the median execution time and its standard deviation for the multivariant
WebAssembly binary.

Answer to RQ3: At the internet scale of the Edge platform, the
multivariant binaries synthesized by MEWE exhibit a massive
diversity of execution traces, while still providing the original
service. It is virtually impossible for an attacker to predict which
is taken for a given query.

5.4 RQ4 Results: Timing side-channels
For each endpoint used in RQ1, we compare the execution time
distributions for the original binary and the multivariant binary. All
distributions are measured on 100k executions. In Table 4, we show
the execution time for the original endpoints and their corresponding
multivariant. The table is structured in two sections. The first section
shows the endpoint name, the median and standard deviation of
the original endpoint. The second section shows the median and
the standard deviation for the execution time of the corresponding
multivariant binary.

We also observe that the distributions for multivariant binaries have
a higher standard deviation of execution time. A statistical comparison
between the execution time distributions confirms the significance
of this difference (P-value = 0.05 with a Mann-Withney U test). This
hints at the fact that the execution time for multivariant binaries is
more unpredictable than the time to execute the original binary.
In Figure 4, each subplot represents the distribution for a single

endpoint, with the colors blue and green representing the original and
multivariant binary respectively. These plots reveal that the execution
times are indeed spread over a larger range of values compared to the
original binary. This is evidence that execution time is less predictable
for multivariant binaries than for the original ones.
We evaluate to what extent a specific variant can be detected by

observing the execution time distribution. This evaluation is based
on the measurement with one endpoint. For this, we choose endpoint
bin2base64 because it is the end point that has the least variants and
the least dispatchers, which is the most conservative assumption.
We dissect the collected execution times for the bin2base64 end-

point, grouping them by execution path. In Figure 5, each opaque curve
represents a cumulative execution time distribution of a unique execu-
tion path out of the 41 observed. We observe that no specific distribu-
tion is remarkably different from another one. Thus, no specific variant
can be inferred out of the projection of all execution times like the ones
presented in Figure 4. Nevertheless, we calculate a Mann-Whitney

test for each pair of distributions, 41 × 41 pairs. For all cases, there is
no statistical evidence that the distributions are different, 𝑃 > 0.05.
Recall that the choice of function variant is randomized at each

function invocation, and the variants have different execution times
as a consequence of the code transformations, i.e., some variants
execute more instructions than others. Consequently, attacks relying
on measuring precise execution times of a function are made a lot
harder to conduct as the distribution for the multivariant binary is
different and even more spread than the original one.

We evaluate the impact of multivariant binaries on execution time.
As a baseline, we consider the evaluation proposed by Fastly [1, 2]:
a Markdown to HTML conversion service shall run on their edge
platform and return a response in less than 100 ms, allowing one
request for every single keystroke. In this context, all the multivariant
binaries for Libsodium match the baseline and still support requests
at the speed of keystrokes. The multivariant binaries for QR encoding
respond in a reasonable time for end users, i.e., in less than half a
second, but are below the baseline. In general, we note that the
execution times are slower for multivariant binaries. Being under 500
ms in general, this does not represent a threat to the applicability of
multivariant execution at the edge. Yet, it calls for future optimization
research.
Answer to RQ4: The execution time distributions are
significantly different between the original and the multivariant
binary. Furthermore, no specific variant can be inferred from
execution times gathered from the multivariant binary. MEWE
contributes to mitigate potential attacks based on predictable
execution times.

6 RELATED WORK
Our work is in the area of software diversification for security, a
research field discovered by researchers Forrest [26] and Cohen [21].
We contribute a novel technique for multivariant execution, and
discuss related work in Section 2. Here, we position our contribution
with respect to previous work on randomization and security for
WebAssembly.

6.1 Related Work on Randomization
A randomization technique creates a set of unique executions for
the very same program [12]. Seminal works include instruction-set
randomization [9, 34] to create a unique mapping between artificial
CPU instructions and real ones. This makes it very hard for an attacker
ignoring the key to inject executable code. Compiler-based techniques
can randomly introduce NOP and padding to statically diversify
programs. [30] have explored how to use NOP and it breaks the
predictability of program execution, even mitigating certain exploits
to an extent.

Chew and Song [19] target operating system randomization. They
randomize the interface between the operating system and the user ap-
plications: the system call numbers, the library entry points (memory
addresses) and the stack placement. All those techniques are dynamic,
done at runtime using load-time preprocessing and rewriting. Bathkar
et al. [12, 13] have proposed three kinds of randomization transfor-
mations: randomizing the base addresses of applications and libraries
memory regions, random permutation of the order of variables and

, Vol. 1, No. 1, Article . Publication date: August 2022.

10 • Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry

0.0 0.2 0.4 0.6 0.8

Execution time (ms)

101
102
103

D
en

si
ty

encrypt

0.0 0.2 0.4 0.6 0.8 1.0

Execution time (ms)

101
102
103

D
en

si
ty

decrypt

0.0 0.2 0.4 0.6 0.8 1.0

Execution time (ms)

101
102
103

D
en

si
ty

random

0.2 0.4 0.6 0.8 1.0

Execution time (ms)

101
102
103

D
en

si
ty

invert

0.0 0.2 0.4 0.6 0.8

Execution time (ms)

101
102
103

D
en

si
ty

bin2base64

0 200 400 600

Execution time (ms)

101
102
103

D
en

si
ty

qr str

0 200 400 600

Execution time (ms)

101
102
103

D
en

si
ty

qr image

Original binary

Multivariant binary

Fig. 4. Execution time distributions. Each subplot represents the distribution for a single endpoint, blue for the original endpoint and green for the multivariant
binary. The X axis shows the execution time in milliseconds and the Y axis shows the density distribution in logarithmic scale.

200 400 600

Execution time (µs)

0.0000

0.0025

0.0050

0.0075

P
ro

b
ab

il
it

y

Fig. 5. Execution time distributions for the bin2base64 endpoint. Each opaque
curve represents an execution time distribution of a unique execution path
out of the 41 observed.

routines, and the random introduction of random gaps between ob-
jects. Dynamic randomization can address different kinds of problems.
In particular, it mitigates a large range of memory error exploits.
Recent work in this field include stack layout randomization against
data-oriented programming [7] and memory safety violations [37], as
well as a technique to reduce the exposure time of persistent memory
objects to increase the frequency of address randomization [60].
We contribute to the field of randomization, at two stages. First,

we automatically generate variants of a given program, which have
different WebAssembly code and still behave the same. Second,
we randomly select which variant is executed at runtime, creating
a multivariant execution scheme that randomizes the observable
execution trace at each run of the program.

Davi et al. proposed Isomeron [25], an approach for execution-path
randomization. Isomeron simultaneously loads the original program
and a variant. While the program is running, Isomeron continuously
flips a coin to decide which copy of the program should be executed
next at the level of function calls. With this strategy, a potential
attacker cannot predict whether the original or the variant of a
program will execute. MEWE proposes two key novel contributions.
First, our code diversification step can generate variants of complex
control flow structures by inferring constants or loop unrolling.
Second, MEWE interconnects hundreds of variants and several
randomization dispatchers in a single binary, increasing by orders of
magnitude the runtime uncertainty about what code will actually run,
compared to the choice among 2 variants proposed by Isomeron.

6.2 Related work on WebAssembly Security
The reference piece about WebAssembly security is by Lehmann et
al. [38], which presents three attack primitives. Lehmann et al. have
then followed up with a large-scale empirical study of WebAssembly
binaries [29]. Narayan et al. [45] remark that the security model
of WebAssembly is vulnerable to Spectre attacks. This means that
WebAssembly sandboxes may be hijacked and leak memory. They

propose to modify the Lucet compiler used by Fastly to incorporate
LLVM fence instructions4 in the machine code generation, trying to
avoid speculative execution mistakes. Johnson et al. [33], on the other
hand, propose fault isolation for WebAssembly binaries, a technique
that can be applied before being deployed to the edge-cloud platforms.
Stievenart et al. [55] design a static analysis dedicated to information
flow problems. Bian et al. [14] performs runtime monitoring of
WebAssembly to detect cryptojacking. The main difference with our
work is that our defense mechanism is larger in scope, meant to
tackle “yet unknown” vulnerabilities. Notably, MEWE is agnostic
from the last-step compilation pass that translates Wasm to machine
code, which means that the multivariant binaries can be deployed on
any edge-cloud platform that can receive WebAssembly endpoints,
regardless of the underlying hardware.

7 CONCLUSION
In this work we propose a novel technique to automatically synthesize
multivariant binaries to be deployed on edge computing platforms.
Our tool, MEWE, operates on a single service implemented as
a WebAssembly binary. It automatically generates functionally
equivalent variants for each function that implements the service,
and combines all the variants in a single WebAssembly binary, which
exact execution path is randomized at runtime. Our evaluation with 7
real-world cryptography and QR encoding services shows that MEWE
can generate hundreds of function variants and combine them into
binaries that include from thousands to millions of possible execution
paths. The deployment and execution of the multivariant binaries on
the Fastly cloud platform showed that they actually exhibit a very
high diversity of execution at runtime, in single edge nodes, as well
as Internet scale.

Future work with MEWE will address the trade-off between a large
space for execution path randomization and the computation cost of
large-scale runtime randomization. In addition, the synthesis of a large
pool of variants supports the exploration of the concurrent execution
of multiple variants to detect misbehaviors in services deployed at
the edge. Besides, several components of MEWE are implemented
to operate at the level of the LLVM intermediate language. These
components are compatible with other LLVM workflows. We plan to
extend MEWE for other LLVM workflows, such as Rust, a popular
workflow for Wasm applications and libraries.

REFERENCES
[1] 2020. Markdown to HTML. https://markdown-converter.edgecompute.app/

4https://llvm.org/doxygen/classllvm_1_1FenceInst.html

, Vol. 1, No. 1, Article . Publication date: August 2022.

Multi-variant Execution at the Edge • 11

[2] 2020. The power of serverless, 72 times over. https://www.fastly.com/blog/the-
power-of-serverless-at-the-edge

[3] 2021. Global CDN Disruption. https://status.fastly.com/incidents/vpk0ssybt3bj
[4] 2021. The New York Times on failure, risk, and prepping for the 2016 US presidential

election – Fastly. https://www.fastly.com/blog/new-york-times-on-failure-risk-
and-prepping-2016-us-presidential-election

[5] 2021. WebAssembly System Interface. https://github.com/WebAssembly/WASI
[6] Onur Acıiçmez, Werner Schindler, and Çetin K Koç. 2007. Cache based remote

timing attack on the AES. In Cryptographers’ track at the RSA conference. Springer,
271–286.

[7] Misiker Tadesse Aga and Todd Austin. 2019. Smokestack: thwarting DOP attacks
with runtime stack layout randomization. In Proc. of CGO. 26–36. https://drive.
google.com/file/d/12TvsrgL8Wt6IMfe6ASUp8y69L-bCVao0/view

[8] Simon Allier, Olivier Barais, Benoit Baudry, Johann Bourcier, Erwan Daubert,
Franck Fleurey, Martin Monperrus, Hui Song, and Maxime Tricoire. 2015. Multitier
diversification in Web-based software applications. IEEE Software 32, 1 (2015), 83–90.
https://doi.org/10.1109/MS.2014.150

[9] Elena Gabriela Barrantes, David H Ackley, Stephanie Forrest, Trek S Palmer, Darko
Stefanovic, and Dino Dai Zovi. 2003. Randomized instruction set emulation to
disrupt binary code injection attacks. In Proc. CCS. 281–289.

[10] Nicolas Belleville, Damien Couroussé, Karine Heydemann, and Henri-Pierre Charles.
2018. Automated Software Protection for the Masses Against Side-Channel Attacks.
ACM Trans. Archit. Code Optim. 15, 4, Article 47 (nov 2018), 27 pages. https:
//doi.org/10.1145/3281662

[11] Daniel J Bernstein. 2005. Cache-timing attacks on AES. (2005).
[12] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. 2003. Address obfuscation: an

efficient approach to combat a board range of memory error exploits. In Proceedings
of the USENIX Security Symposium.

[13] Sandeep Bhatkar, Ron Sekar, and Daniel C DuVarney. 2005. Efficient techniques for
comprehensive protection from memory error exploits. In Proceedings of the USENIX
Security Symposium. 271–286.

[14] Weikang Bian, Wei Meng, and Mingxue Zhang. 2020. Minethrottle: Defending
against wasm in-browser cryptojacking. In Proceedings of The Web Conference 2020.
3112–3118.

[15] Tegan Brennan, Nicolás Rosner, and Tevfik Bultan. 2020. JIT Leaks: inducing timing
side channels through just-in-time compilation. In 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 1207–1222.

[16] Danilo Bruschi, Lorenzo Cavallaro, and Andrea Lanzi. 2007. Diversified process
replicæ for defeating memory error exploits. In Proc. of the Int. Performance,
Computing, and Communications Conference.

[17] David Bryant. 2020. Webassembly outside the browser: A new foundation for
pervasive computing. In Proc. of ICWE 2020. 9–12.

[18] Javier Cabrera-Arteaga, Orestis Floros Malivitsis, Oscar Vera-Pérez, Benoit Baudry,
and Martin Monperrus. 2021. CROW: Code Diversification for WebAssembly. In
MADWeb, NDSS 2021.

[19] Monica Chew and Dawn Song. 2002. Mitigating buffer overflows by operating system
randomization. Technical Report CS-02-197. Carnegie Mellon University.

[20] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg. 2014. A
hybrid edge-cloud architecture for reducing on-demand gaming latency. Multimedia
systems 20, 5 (2014), 503–519.

[21] Frederick B Cohen. 1993. Operating system protection through program evolution.
Computers & Security 12, 6 (1993), 565–584.

[22] Bart Coppens, Bjorn De Sutter, and Jonas Maebe. 2013. Feedback-driven binary code
diversification. ACM Transactions on Architecture and Code Optimization (TACO) 9,
4 (2013), 1–26.

[23] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack
Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. 2006. N-variant
systems: a secretless framework for security through diversity. In Proc. of USENIX
Security Symposium (Vancouver, B.C., Canada) (USENIX-SS’06). http://dl.acm.org/
citation.cfm?id=1267336.1267344

[24] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz.
2015. Thwarting Cache Side-Channel Attacks Through Dynamic Software Diversity.
In NDSS. 8–11.

[25] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and Fabian
Monrose. 2015. Isomeron: Code Randomization Resilient to (Just-In-Time) Return-
Oriented Programming. In NDSS.

[26] Stephanie Forrest, Anil Somayaji, and David H Ackley. 1997. Building diverse
computer systems. In Proceedings. The Sixth Workshop on Hot Topics in Operating
Systems. IEEE, 67–72.

[27] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the web up
to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 185–200.

[28] Pat Hickey. 2018. Announcing Lucet: Fastly’s native WebAssembly compiler and
runtime. Technical Report. https://www.fastly.com/blog/announcing-lucet-fastly-
native-webassembly-compiler-runtime

[29] Aaron Hilbig, Daniel Lehmann, and Michael Pradel. 2021. An Empirical Study of
Real-World WebAssembly Binaries: Security, Languages, Use Cases. In Proceedings
of the Web Conference 2021. 2696–2708.

[30] Todd Jackson. 2012. On the Design, Implications, and Effects of Implementing Software
Diversity for Security. Ph.D. Dissertation. University of California, Irvine.

[31] Todd Jackson, Christian Wimmer, and Michael Franz. 2010. Multi-variant program
execution for vulnerability detection and analysis. In Proceedings of the Sixth Annual
Workshop on Cyber Security and Information Intelligence Research. 1–4.

[32] Martin Jacobsson and Jonas Wåhslén. 2018. Virtual machine execution for wearables
based on webassembly. In EAI International Conference on Body Area Networks.
Springer, Cham, 381–389.

[33] Evan Johnson, David Thien, Yousef Alhessi, Shravan Narayan, Fraser Brown, Sorin
Lerner, Tyler McMullen, Stefan Savage, and Deian Stefan. 2021. SFI safety for
native-compiled Wasm. NDSS. Internet Society (2021).

[34] Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. 2003. Countering
code-injection attacks with instruction-set randomization. In Proc. of CCS. 272–280.

[35] Dohyeong Kim, Yonghwi Kwon, William N. Sumner, Xiangyu Zhang, and Dongyan
Xu. 2015. Dual Execution for On the Fly Fine Grained Execution Comparison.
SIGPLAN Not. (2015).

[36] Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure and efficient multi-
variant execution using hardware-assisted process virtualization. In 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE,
431–442.

[37] Seongman Lee, Hyeonwoo Kang, Jinsoo Jang, and Brent Byunghoon Kang. 2021.
SaVioR: Thwarting Stack-Based Memory Safety Violations by Randomizing Stack
Layout. IEEE Transactions on Dependable and Secure Computing (2021). https:
//ieeexplore.ieee.org/iel7/8858/4358699/09369900.pdf

[38] Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything Old is
New Again: Binary Security of WebAssembly. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association.

[39] Julian Lettner, Dokyung Song, Taemin Park, Per Larsen, Stijn Volckaert, and Michael
Franz. 2018. PartiSan: fast and flexible sanitization via run-time partitioning. In
International Symposium on Research in Attacks, Intrusions, and Defenses. Springer,
403–422.

[40] Hans Liljestrand, Thomas Nyman, Lachlan J Gunn, Jan-Erik Ekberg, and N Asokan.
2021. PACStack: an Authenticated Call Stack. In 30th USENIX Security Symposium
(USENIX Security 21).

[41] Kangjie Lu, Meng Xu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2018. Stopping
memory disclosures via diversification and replicated execution. IEEE Transactions
on Dependable and Secure Computing (2018).

[42] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. Ann. Math. Statist. 18, 1 (03 1947),
50–60. https://doi.org/10.1214/aoms/1177730491

[43] Matthew Maurer and David Brumley. 2012. TACHYON: Tandem execution for
efficient live patch testing. In 21st USENIX Security Symposium (USENIX Security 12).
617–630.

[44] P. Mendki. 2020. Evaluating Webassembly Enabled Serverless Approach for
Edge Computing. In 2020 IEEE Cloud Summit. 161–166. https://doi.org/10.1109/
IEEECloudSummit48914.2020.00031

[45] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan Johnson,
Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita, Hovav Shacham, Dean Tullsen,
et al. 2021. Swivel: Hardening WebAssembly against Spectre. In USENIX Security
Symposium.

[46] Adam J O’Donnell and Harish Sethu. 2004. On achieving software diversity for
improved network security using distributed coloring algorithms. In Proceedings of
the 11th ACM conference on Computer and communications security. 121–131.

[47] Sebastian Österlund, Koen Koning, Pierre Olivier, Antonio Barbalace, Herbert Bos,
and Cristiano Giuffrida. 2019. kMVX: Detecting kernel information leaks with
multi-variant execution. In ASPLOS.

[48] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing digital side-
channels through obfuscated execution. In 24th USENIX Security Symposium (USENIX
Security 15). 431–446.

[49] Barbara G Ryder. 1979. Constructing the call graph of a program. IEEE Transactions
on Software Engineering 3 (1979), 216–226.

[50] Babak Salamat, Andreas Gal, Todd Jackson, Karthik Manivannan, Gregor Wagner,
and Michael Franz. 2007. Stopping Buffer Overflow Attacks at Run-Time: Simultaneous
Multi-Variant Program Execution on aMulticore Processor. Technical Report. Technical
Report 07-13, School of Information and Computer Sciences, UCIrvine.

[51] Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. 2009. Orchestra:
intrusion detection using parallel execution and monitoring of program variants in
user-space. In Proceedings of the 4th ACM European conference on Computer systems.
33–46.

[52] Babak Salamat, Todd Jackson, Gregor Wagner, Christian Wimmer, and Michael
Franz. 2011. Runtime Defense against Code Injection Attacks Using Replicated
Execution. IEEE Trans. Dependable Secur. Comput. 8, 4 (2011), 588–601. https:
//doi.org/10.1109/TDSC.2011.18

, Vol. 1, No. 1, Article . Publication date: August 2022.

12 • Javier Cabrera-Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry

[53] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight isolation for efficient
stateful serverless computing. In USENIX Annual Technical Conference. 419–433.

[54] Natalie Silvanovich. 2018. The Problems and Promise of WebAssembly. Technical
Report. https://googleprojectzero.blogspot.com/2018/08/the-problems-and-
promise-of-webassembly.html

[55] Quentin Stiévenart and Coen De Roover. 2020. Compositional Information Flow
Analysis for WebAssembly Programs. In 2020 IEEE 20th International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 13–24.

[56] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and
Dario Sabella. 2017. On Multi-Access Edge Computing: A Survey of the Emerging
5G Network Edge Cloud Architecture and Orchestration. IEEE Comm. Surveys &
Tutorials 19, 3 (2017).

[57] Kenton Varda. 2018. WebAssembly on Cloudflare Workers. Technical Report.
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/

[58] Stijn Volckaert, Bart Coppens, and Bjorn De Sutter. 2015. Cloning your gadgets:
Complete ROP attack immunity with multi-variant execution. IEEE Transactions on
Dependable and Secure Computing 13, 4 (2015).

[59] Alexios Voulimeneas, Dokyung Song, Per Larsen, Michael Franz, and Stijn Volckaert.
2021. dMVX: Secure and Efficient Multi-Variant Execution in a Distributed Setting.
In Proceedings of the 14th European Workshop on Systems Security. 41–47.

[60] Yuanchao Xu, Yan Solihin, and Xipeng Shen. 2020. Merr: Improving security
of persistent memory objects via efficient memory exposure reduction and
randomization. In Proc. of ASPLOS. 987–1000. https://dl.acm.org/doi/pdf/10.1145/
3373376.3378492

A DISPATCHER FUNCTION CODE

define internal i32 @b64_byte2urlsafe_char(i32 %0) {

entry:

%1 = call i32 @discriminate(i32 3)

switch i32 %1, label %end [i32 0, label %case_43_ i32 1, label

%case_44_]
case_43_: ; preds = %entry
%2 = call i32 @b64_byte_to_urlsafe_char_43_(%0)
ret i32 %2

case_44_: ; preds = %entry
%3 = <body of b64_byte_to_urlsafe_char_44_>

ret i32 %3
end: ; preds = %entry
%4 = call i32 @b64_byte2urlsafe_char_original(%0)
ret i32 %4

}

Listing 3. Dispatcher function embedded in the multivariant binary of the
bin2base64 endpoint of libsodium, which corresponds to the rightmost green
node in Figure 2.

B MULTIVARIANT BINARY EXECUTION AT THE EDGE
When a WebAssembly binary is deployed on an edge platform, it is
translated to machine code on the fly. For our experiment, we deploy
on the production edge nodes of Fastly. This edge computing platform
uses Lucet, a native WebAssembly compiler and runtime, to compile
and run the deployed Wasm binary 5. Lucet generates x86 machine
code and ensures that the generated machine code executes inside a
secure sandbox, controlling memory isolation.
Figure 6 illustrates the runtime behavior of the original and the

multivariant binary, when deployed on an Edge node. The top most
diagram illustrates the execution trace for the original of the endpoint
bin2base64. When the HTTP request with the input "HelloWorld!"
is received, it invokes functions 𝑓 1, 𝑓 2 followed by 27 recursive calls
of function 𝑓 3. Then, the endpoint sends the result
"0x000xccv0x10x00b3Jsx130x000x00 0x00xpopAHRvdGE=" of its
base64 encoding in an HTTP response.
5https://github.com/bytecodealliance/lucet

f1 f2 f3 f3 f3 f3

d1 f2 d2 f31f12 d2 f32 d2 f31

Client

Client

Client

...

...

d1 f2 d2 f32f17 d2 f31 d2 f31...

Original Dispatcher Variant

HTTP request call return HTTP response
Fig. 6. Top: an execution trace for the bin2base64 endpoint. Middle and
bottom: two different execution traces for the multivariant bin2base64,
exhibited by two different requests with exactly the same input.

The two diagrams at the bottom of Figure 6 illustrate two executions
traces observed through two different requests to the endpoint
bin2base64. In the first case, the request first triggers the invocation
of dispatcher 𝑑1, which randomly decides to invoke the variant 𝑓 12;
then 𝑓 2, which has not been diversified by MEWE, is invoked; then
the recursive invocations to 𝑓 3 are replaced by iterations over the
execution of dispatcher 𝑑2 followed by a random choice of variants
of 𝑓 3. Eventually the result is computed and sent back as an HTTP
response. The second execution trace of the multivariant binary shows
the same sequence of dispatcher and function calls as the previous
trace, and also shows that for a different requests, the variants of 𝑓 1
and 𝑓 3 are different.
The key insights from these figures are as follows. First, from a

client’s point of view, a request to the original or to a multivariant
endpoint, is completely transparent. Clients send the same data,
receive the same result, through the same protocol, in both cases.
Second, this figure shows that, at runtime, the execution paths for
the same endpoint are different from one execution to another, and
that this randomization process results from multiple random choices
among function variants, made through the execution of the endpoint.

C VARIANTS PRESERVATION
During our experiments, we checked for code diversity preservation
after compilation. In this work, diversity is introduced through
transformation on WebAssembly code, which is then compiled by
the Lucet compiler. Compilation might perform some normalization
and optimization passes when translating from WebAssembly to
machine code. Thus, some variants synthesized by MEWE might not
be preserved, i.e., Lucet could generate the same machine code for two
WebAssembly variants. To assess this potential effect, we compare the
level of code diversity among the WebAssembly variants and among
the machine code variants produced by Lucet. This experiment reveals
that the translation to machine code preserves a high ratio of function
variants, i.e., approx 96% of the generated variants are preserved.
This result also indicates that the machine code variants preserve the
potential for large numbers of possible execution paths.

, Vol. 1, No. 1, Article . Publication date: August 2022.

SCALABLE COMPARISON OF
JAVASCRIPT V8 BYTECODE TRACES

Javier Cabrera-Arteaga, Martin Monperrus, Benoit Baudry
11th ACM SIGPLAN International Workshop on Virtual Machines and
Intermediate Languages (SPLASH 2019)

https://doi.org/10.1145/3358504.3361228

94

https://doi.org/10.1145/3358504.3361228

Scalable Comparison of JavaScript V8 Bytecode Traces
Javier Cabrera Arteaga

KTH Royal Institute of Technology
Stockholm, Sweden
javierca@kth.se

Martin Monperrus
KTH Royal Institute of Technology

Stockholm, Sweden
martin.monperrus@csc.kth.se

Benoit Baudry
KTH Royal Institute of Technology

Stockholm, Sweden
baudry@kth.se

Abstract
The comparison and alignment of runtime traces are essen-
tial, e.g., for semantic analysis or debugging. However, naive
sequence alignment algorithms cannot address the needs of
the modern web: (i) the bytecode generation process of V8
is not deterministic; (ii) bytecode traces are large.

We present STRAC, a scalable and extensible tool tailored
to compare bytecode traces generated by the V8 JavaScript
engine. Given two V8 bytecode traces and a distance function
between trace events, STRAC computes and provides the best
alignment. The key insight is to split access betweenmemory
and disk. STRAC can identify semantically equivalent web
pages and is capable of processing huge V8 bytecode traces
whose order of magnitude matches today’s web like https:
//2019.splashcon.org, which generates approx. 150k of V8
bytecode instructions.

CCS Concepts • Information systems → World Wide
Web; • Theory of computation → Program semantics;
• Software and its engineering→ Interpreters; Source code
generation; Designing software.

Keywords V8, Sequence alignment, JavaScript, Bytecode,
Similarity measurement

ACM Reference Format:
Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry.
2019. Scalable Comparison of JavaScript V8 Bytecode Traces. In
Proceedings of the 11th ACM SIGPLAN International Workshop on
Virtual Machines and Intermediate Languages (VMIL ’19), October
22, 2019, Athens, Greece. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3358504.3361228

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
VMIL ’19, October 22, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6987-9/19/10. . . $15.00
https://doi.org/10.1145/3358504.3361228

1 Introduction
Runtime traces record the execution of programs. This in-
formation captures the dynamics of programs and can be
used to determine semantic similarity [29], to detect abnor-
mal program behavior [8], to check refactoring correctness
[22] or to infer execution models [1]. In many cases, this is
achieved by comparing execution traces, e.g. comparing the
traces of the original program and the refactored one. The
comparison of program traces can be based on information
retrieval [17], tree differencing [9, 27] and sequence align-
ment [2, 11]. In this paper, we focus on the latter, in order
to compare sequences of V8 bytecode instructions resulting
from the execution of JavaScript code.

V8 is an open source, high-performance JavaScript engine.
For debugging purposes, it provides powerful facilities to ex-
port page execution information [21], including intermediate
internal bytecode called the V8 bytecode [4].
Due to the dynamic nature of the Web, we observe that

the bytecode generation process of V8 is not determinis-
tic. For example, visiting the same page several times re-
sults in different V8 bytecode traces every time. This non-
determinism is a key challenge for sequence alignment ap-
proaches, even if they performwell on deterministic program
traces [10]. Besides, V8 bytecode traces are large. Naive se-
quence alignment algorithms are time and space quadratic
on trace sizes and do not scale to V8 bytecode traces. To illus-
trate this scaling problem, let us consider a simple query to
https://2019.splashcon.org: it generates between 139555 and
162558 V8 bytecode instructions, and aligning two traces of
such size, requires approximately 150GB of memory1. This
memory requirement is not realistic for trace analysis tasks
on developer’s personal computers or servers. The key chal-
lenge that we address in this work is to provide a trace
comparison tool that scales to V8 bytecode traces.
In this paper, we present STRAC (Scalable Trace Com-

parison), a scalable and extensible tool tailored to compare
bytecode traces from the V8 JavaScript engine. STRAC im-
plements an optimized version of the DTW algorithm [18].
Given two V8 bytecode traces and a distance function be-
tween trace events, STRAC computes and provides the best
alignment. The key insight is to split access betweenmemory
and disk.
Our experiments compare STRAC with 6 other publicly-

available implementations of DTW. The comparison involves

1In this paper, memory means RAM.

22

VMIL ’19, October 22, 2019, Athens, Greece Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry

100 pairs of V8 bytecode traces collected over 6 websites. Our
experimental results show that 1) STRAC can identify se-
mantically equivalent web pages and 2) STRAC is capable of
processing big V8 bytecode traces whose order of magnitude
matches today’s web.

To sum up, our contributions are:

• An analysis of the challenges for analyzing browser
traces, due to the JavaScript engine internals and the
randomness of the environment. We explain and show
examples of how the same browser query can generate
two different V8 bytecode traces.

• A tool called STRAC that implements the popular align-
ment algorithm DTW in a scalable way, publicly avail-
able at https://github.com/KTH/STRAC .

• A set of experiments comparing 100 V8 bytecode
traces collected over 6 real world websites:google.com,
kth.se, github.com, wikipedia.org, 2019.splashcon.org
and youtube.com. Our experiments show that STRAC
copes with the non-deterministic traces and is signifi-
cantly faster than state-of-the-art tools.

The paper is structured as follows. First we introduce a
background of V8 bytecode generation non-determinism and
the formalisms used in our work (Section 2). Then follows
with technical insights to implement STRAC (Section 3),
research question formulation, experimental results with a
discussion about them (Section 4). We then present related
work (Section 5) and conclude (Section 6).

2 Background
In this section we discuss the key insights behind the non-
determinism of the V8 bytecode generation process, as well
as the foundations of the DTW alignment algorithm.

2.1 Browser Traces
Our dynamic analysis technique is evaluated with V8 byte-
code [19]. In this subsection, we describe how the V8 engine
generates bytecode trace. We collect such traces to evaluate
our trace comparison tool. In this work, we use the term "V8
bytecode trace" to refer to the result of executing V8 with
the –print-bytecode flag [21].

2.1.1 V8 Bytecode Generation
The V8 engine compiles JavaScript source code to an inter-
mediate representation called “V8 bytecode”. This is done
to increase execution performance. The V8 engine parses
and compiles every JavaScript code declaration present in
HTML pages into a bytecode representation, composed by
function declarations, like the one shown in Figure 1. These
function declarations came from V8 builtin JavaScript code
and external JavaScripts.
V8’s bytecode interpreter is a register machine [16]. Fig-

ure 1 shows a JavaScript code and its bytecode translation.

Each bytecode operator specifies its inputs and outputs as
register operands. V8 has 180 different bytecode operators.

The bytecode translation is lazy, i.e. V8 tries to avoid gen-
erating code it "thinks" might not be executed. Consequently,
a function that is not called will not be compiled [28]. For
example, removing line 2 in the top listing of Figure 1 would
prevent the compilation of bytecode for the function declared
in line 1. This behavior has an impact on the collected traces.

1 function plusOne(a){ return a.value + 1; }

2 plusOne({value : 2018});

1 [generated bytecode for function: plusOne]

2 Parameter count 2

3 Register count 0

4 Frame size 0

5 30 E> 0x1373c709b6 @ 0 : a5 00 00 00 StackCheck

6 56 S> 0x1373c709b7 @ 1 : 28 02 00 01

↪→ LdaNamedProperty a0, [0], [1]

7 62 E> 0x1373c709bb @ 5 : 40 01 00 00 AddSmi [1],

↪→ [0]

8 66 S> 0x1373c709be @ 8 : a9 00 00 00 Return

Figure 1. Example of a JavaScript function and its corre-
sponding V8 bytecode instructions.

We have observed that V8 bytecode is resilient to script
minification and static code-obfuscation techniques. There-
fore, we believe that aligning such low-level representations
could prove to be a useful aid in many program analysis
tasks, such as code similarity study and malware analysis.

2.1.2 Non-Determinism in Browser Traces

bytecode p1 p2 p3

<html...
<script p1.js...
<script p2.js...
<script p3.js...

p2.js
p3.js

p1.js

p1.js
p2.js

bytecode p1 p3p2

t0

fetching
parsing and
compiling

<html...
<script p1.js...
<script p2.js...
<script p3.js... p3.js

Figure 2. Illustration of two different script fetching and
compiling traces for the same browser query.

Interestingly, browsers are fundamentally non determinis-
tic, depending on web server availability, current workload,

23

Scalable Comparison of JavaScript V8 Bytecode Traces VMIL ’19, October 22, 2019, Athens, Greece

and DNS caches through the network. Let us look at the
example illustrated in Figure 2. It shows what happens when
fetching a web page, which contains 3 scripts. The top and
bottom parts illustrate, for the same page, two different exe-
cutions. Dashed border rectangles represent complete byte-
code generation traces. The blue spaces in the bar are V8
common builtin bytecode, which is systematically generated
in all browser requests. Orange rectangles illustrate declared
page scripts compilations. The complete bytecode trace is
the union of both generated bytecodes, builtin V8 and page
declared scripts. In the first case at the top of Figure 2, the
scripts are fetched and compiled in the same order they are
declared. In the second case, at the bottom, p3.js is carried
and compiled first, before p2.js due to a possible network de-
lay. However, V8’s compiler will put all scripts compilations
in the same order they are declared in the HTML page. The
final result is two semantically equivalent bytecode compila-
tions, where script blocks may not be strictly placed in the
same position.

The slight differences that occur in the final bytecode for
same browser queries motivate us to provide an efficient tool
for traces alignment: traces where events occur in different
orders but that have the same semantics must be considered
as equivalent. The order of events should not confuse the
trace comparison tool.

2.1.3 DTW Algorithm
The DTW algorithm has been introduced by Needleman and
Wunsch for protein global alignment [18]. Global alignment
means trace heads and tails are constrained to match each
other in position. DTW is a popular technique for comparing
traces in different domains, incl. software traces [14]. DTW
finds the best global alignment between two traces, based on
a generic similarity function between trace events and gaps.

Definition (Trace) A trace X is defined as a sequence of
events. X = x1, x2, ...xN represents a trace of size N where
each xi is the event happening at the ith position.

Definition (Cost Matrix) D is a cost matrix for two
traces X and Y of size n andm. Di j stores the optimal cost
alignment value for X and Y considered from the start up
to the ith and jth positions respectively, that is the minimal
cost of aligning xi and yj events at the same position in the
final alignment.

The cost matrix is defined according to a distance function
d and a gap cost γ as follows:

D0i = γ ∗ i
D j0 = γ ∗ j

Di j =min

Di−1j + γ ,
Di j−1 + γ
Di−1j−1 + d(xi ,yj)

In every cell, the value Di j is the minimum cost between
putting a gap in one trace and the result of evaluating the
distance function between events xi and yj .

Definition (Alignment Cost) Given two traces X and Y
with sizes N and M respectively, the alignment cost is the
value stored in DNM .

Definition (Alignment Difficulty) Given two traces X
and Y with sizes N andM respectively, the alignment diffi-
culty is simply the multiplication of both sizes N ×M .

Definition (Warp Path) The warp path is the path to go
from DNM to the first element D00 minimizing the cumula-
tive cost. In general more than one path may exist. Size of
warp path is O(N +M).

Definition (Aligned Trace) An aligned trace is a trace
where the warp path is applied, i.e. some gaps have been put
between some events in one of both traces.
In Figure 3 we illustrate the alignment between traces

abcababc and aabaca with γ = 1, d(xi ,yj) = 2 if xi , yi
and d(xi ,yj) = 0 if xi = yi . The warp path is represented as
the blue and orange lines going across the matrix from the
top left corner to the bottom right corner. In this example,
alignment cost is 4, as we can see in bottom right corner cell
in Figure 3.

a a b a c a

a
b
c
a
b
a
b
c

543210 6
51 0 1 2 3 4
42 1 2 1 2 3
33 2 3 2 3 2
24 3 2 3 2 3
35 4 3 2 3 4
46 5 4 3 2 3
57 6 5 4 3 4
48 7 6 5 4 3

cabaa b c b

acabaa

Figure 3. Cost matrix, warp path and applied alignment for
abcababc and aabaca example traces.

3 STRAC: Trace Comparison Tool for V8
STRAC is an approach to compare large traces, tailored to
bytecode traces of the V8 JavaScript engine. STRAC takes
as input a trace of JavaScript V8 bytecode traces collected
in the browser. It produces as output, a trace alignment, and
a distance measure between the two traces. STRAC imple-
ments the DTW algorithm presented in Subsection 2.1.3.
It is an open-source project publicly-available on https:
//github.com/KTH/STRAC . In this section, we explain the

24

VMIL ’19, October 22, 2019, Athens, Greece Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry

key components and insights of STRAC to achieve scalable
trace comparison.

3.1 Challenges Addressed by STRAC
Non-Determinism As shown in Subsection 2.1.2, V8 can
provide two different bytecode traces for the same web page.
In this case, both traces are semantically equivalent, but the
global position of code modules can vary. These variations
occur as a consequence of resource management, interpreter
optimizations and JavaScript code fetching from the network.
It is challenging because it can provide 1) false positives: two
traces may be considered different even when they come
from the same pages; 2) false negatives: two traces may be
considered the same evenwhen they come from two different
pages.

Size Browser traces are huge and naive trace comparison
fails on such traces because of memory requirements. For
instance, aligning two traces of size 63137 and 58265 events
requires a DTW cost matrix, represented as a bidimensional
integer matrix, of 14.72 GB of memory. The challenge is to
make trace comparison at the scale of browser traces, with
tractable memory requirements.

3.2 DTW Distance Functions
The DTW algorithm has two main parameters: a distance
function and a gap cost as explained in Subsection 2.1.3. The
distance function between events affects the global align-
ment result, as we show in Subsection 4.5. It defines the
matching of two different trace instructions if these instruc-
tions have a certain level of similarity. For example, when
comparing ’AddSmi [0], [1]’ and ’AddSmi [1], [0]’ instruc-
tions, they can be considered as similar because the AddSmi
operator is in both.

In STRAC, we define two distance functions for bytecode
instructions.

dSen(xi ,yj) =

s if xi and yj events are exactly
the same bytecode instruction
c otherwise

dInst (xi ,yj) =

s if xi and yj bytecode instructions
share the same bytecode operator
c otherwise

Both require the identity relationship of the bytecode in-
struction. For V8 bytecode, based on our results (Subsec-
tion 4.5), it seems incoherent to accept an alignment match
with two different elements instead of introducing the gap.

We now discuss the value of γ , s and c . The cost of in-
troducing a gap, intuitively, must be less than the cost of
matching two different events, i.e. γ < s . c is the value of
matching two equal events, 0. The default values are based
on our experience, s = 5, γ = 1 and c = 0. The three are
configurable.

3.3 Buffering the Cost Matrix
The key limitation of DTW is the need for a large cost ma-
trix to retrieve the warp path. Recall our example requiring
14.72 GB in Subsection 3.1. This means that a naive imple-
mentation can only compare small traces due to memory
explosion.

In STRAC, we solve this problem by storing the cost matrix
both in memory and disk. Only the appropriate values are
kept in memory. Our key insight is that the current valueDi j
in the cost matrix is calculated with the previous row and
column, consequently, only O(N) memory space is needed
to compute DNM . Thus, STRAC only maintains the current
and previous row in memory for each DTW iteration. After
processing a row, it is saved to disk. STRAC eventually saves
the complete cost matrix to disk.

For traces with lengths 63137 and 58265, instead of 14.72
GB, STRAC requires no more than 86MB of memory for the
trace alignment, which represents an improvement of 99.5%
in memory consumption.

3.4 Retrieving the Warp Path
In addition to the alignment cost, it is necessary to obtain
the warp path in order to create and analyze the aligned
traces. Recall that the aligned traces are obtained by applying
the warp path on both initial traces, as we mentioned in
Subsection 2.1.3.
To retrieve the warp path from the final cost matrix, one

goes backward and starts from the trace tail positions (DNM).
Cost matrix in Di j depends on three neighbors Di−1j , Di j−1
and Di−1j−1. The backtracking process finishes when the
trace start is reached, i.e. when the left top corner D00 is
reached in the matrix. In the warp path construction pro-
cess, trace indices are always decreasing by one, i.e. trace
events are visited only once. Therefore, in STRAC, backtrack-
ing over the final cost matrix requires only O(N +M) read
operations on disk, which is scalable.

3.5 DTW Approximations
Due to the quadratic time and space complexity of DTW,
previous work has proposed approximations to speed up
the alignment process. STRAC also implements two state-of-
the-art DTW approximations. We now mention these two
approximations.

Fixed Regions Using fixed regions is a technique only to
evaluate a specified region in the cost matrix [7, 12, 13, 24].
Consequently, the globally optimal warp path will not be
found if it is not entirely in the window. This improvement
speeds up DTW by a constant factor, but the execution time
is still O(NM). STRAC provides support for fixed regions.

25

Scalable Comparison of JavaScript V8 Bytecode Traces VMIL ’19, October 22, 2019, Athens, Greece

FastDTW 2 [25] is an approximation of DTW that has
a linear time and space complexity. It combines data ab-
straction and constraint search in the solution space. STRAC
implements FastDTW. Note that, for DTW and its approxi-
mations, the default mode is the buffering mode presented
in Subsection 3.3.

3.6 Recapitulation
To sum up, STRAC is an optimized implementation of DTW
and two approximations with distance functions dedicated
to V8 bytecode traces and with neat handling of the cost
matrix over memory and disk in order to scale.

4 Experimental Evaluation
We assess the scalability of STRAC for V8 bytecode trace
comparison with the following research questions:

• RQ1 (Scalability): To what extent does STRAC scale to
traces of real-world web pages?

• RQ2 (Consistency): To what extent does STRAC iden-
tify similarity in semantically-equivalent traces?

• RQ3 (Distance Functions): What is the effectiveness of
STRAC support of different distance functions?

4.1 Study Subjects
Our experiment is based on tracing the home page of
the following sites; google.com, github.com, wikipedia.org,
youtube.com, four of the most visited websites, according
to Alexa. We also add two sites based on personal interest:
2019.splashcon.org and kth.se, the homepage of our Univer-
sity. All those pages use JavaScript code. The traces were
generated just opening the page without any other further
action. Since the traces are non-deterministic, we collect 100
traces for the same page. This means we collect 600 traces
in total.

Table 1. Descriptive statistics of our benchmark.
The 6 sites are sorted by popularity according to
the Alexa index. Example bytecodes are available in
https://github.com/KTH/STRAC/tree/master/STRACAlign/
src/test/resources/bytecodes.

Site No. scripts Bytecode size
google.com 5 85768
youtube.com 15 166626
wikipedia.org 4 48260
github.com 3 59384
kth.se 9 64178
2019.splashcon.org 17 147196

Table 1 gives an overview of the collected traces. The first
column shows the real world website names. The second
2The implementation mentioned in the original paper (https://cs.fit.edu/
~pkc/FastDTW/) was not available at the moment of this work.

and third columns indicate the number of declared scripts
and the bytecode size mean value (orange dots in Figure 4)
respectively. For instance, Wikipedia loads 4 scripts and pro-
duces bytecode traces of 48260 bytecode instructions. This
value is the lowest of our benchmark. On the contrary, for
Youtube, the page declares 15 JavaScript scripts, and V8 gen-
erates traces of 166626 bytecode instructions, and this is due
to the richer features of Youtube compared to Wikipedia.
In our benchmark, the bytecode traces are in the range of
48k-166k instructions.

Recall that the bytecode traces are non-deterministic even
for the same page (see Subsection 2.1.2). We measure how
many instructions are contained in each V8 bytecode trace.
Figure 4 illustrates the distribution of trace sizes as violin
plots. This figure shows that there is a variance of bytecode
traces for all pages (Wikipedia also has some variance but this
is not shown in the figure because of the scale). This variance
is a consequence of several stacked factors: resource manage-
ment, interpreter optimization and JavaScript code fetching
from the network. To our knowledge, this non-determinism
in web traces is overlooked by research.

0 25000 50000 75000 100000 125000 150000 175000

www.google.com

0 25000 50000 75000 100000 125000 150000 175000

youtube.com

0 25000 50000 75000 100000 125000 150000 175000

wikipedia.org

0 25000 50000 75000 100000 125000 150000 175000

www.github.com

0 25000 50000 75000 100000 125000 150000 175000

www.kth.se

0 25000 50000 75000 100000 125000 150000 175000

Number of V8 bytecode instructions

2019.splashcon.org

Figure 4. Variance of V8 bytecode trace size for 100 repeti-
tions of the same query.

4.2 Experimental Methodology
Every trace is collected using a non-cached browser ses-
sion, without plugins. This choice is motivated by two main
reasons: 1) we have observed that cached scripts do not af-
fect bytecode generation as direct network fetching does;

26

VMIL ’19, October 22, 2019, Athens, Greece Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry

2) browser plugins are compiled to the same bytecode trace
and in the scope of this work we are interested only in V8
bytecode traces directly generated from web page scripts.
To answer RQ1, we align 12 trace pairs randomly taken

from the initial set of all possible trace pairs (600 × 600). We
compare STRAC with different implementations of DTW 1)
From public github repositories: rmaestre 3, dtaidistance 4

and pierre-rouanet 5; 2) From R’s dtw package [6] ; 3) The
DTW implementation used in [15], slaypni 6. For each com-
parison, we compute the average wall-clock execution time.

RQ2 is answered as follows. We select a random sample
of 100 pairs from all possible trace pairs (600 × 600). We
select 35 pairs of traces extracted from the same pages and
65 pairs of traces extracted from different pages. Alignment
cost is measured for each pair using gap cost γ = 1 and
event distance function dSen (defined in Subsection 3.2), with
parameters: s = 5 and c = 0. We group and plot each pair
alignment cost per site.
We answer RQ3 using the same traces as RQ2. We com-

pute DTW on each one of the 100 sampled pairs. We use
the same gap cost γ = 1, but we compare the two distance
functions dSen and dInst (defined in Subsection 3.2), with
parameters: s = 5 and c = 0. We measure the alignment cost
for each pair and compare the results with the ones obtained
in RQ2.

The STRAC experimentation has been made on a PC with
Intel Core i7 CPU and 16Gb DDR3 of RAM. We extract all
traces from Chrome version 74.0.3729.169 (Official Build)
(64-bit).

4.3 Answer to RQ1: Scalability
Figure 5 shows the execution time of 6 different alignment
tools on 12 trace pairs. The X axis gives the size of the align-
ment problem, which is the multiplication of the size of both
traces in number of bytecode instructions. The Y axis rep-
resents the execution time in seconds with a logarithmic
scale.

First, we observe that four tools get out of memory for all
the considered trace pairs: R-dtw, cpy-wannesm, rmaestre,
cpy-slaypul (see the red dot in Figure 5). The main reason for
this failure is that those tools need to store the cost matrix
in memory. The least difficult trace comparison in the plot
is a pair of traces of 48k instructions each. Finding the best
alignment for this pair consists in analyzing an eight-bytes
integer matrix of approx. 20GB (exactly 18632 millions of
bytes). This memory requirement is almost the full mem-
ory of modern personal computers and it causes memory
explosion at runtime. Applying the same analysis to the
most difficult alignment in the plot shows requires 200GB of
memory.
3https://github.com/rmaestre/FastDTW
4https://github.com/wannesm/dtaidistance
5https://github.com/pierre-rouanet/dtw
6https://github.com/slaypni/fastdtw

Second, py-wannesm and py-pierre-rouanet calculate the
best alignment cost for the first 10 pairs, without anymemory
issue, even for problems in the order of magnitude close to
1.5× 1010 in alignment difficulty. After this value, these tools
also start to get memory issues for the same reason as the
other tools. Yet, these succesfully align the 10 pairs (orange
and green curves in Figure 5) thanks to an efficient use of
Numpy [3] arrays to store cost matrix. Numpy arrays in
Python are tailored to efficiently deal with arrays up to 20GB
of memory in x64 architectures. We also observe that py-
wannesm is always slower than py-pierre-rouanet. The main
reason for this time difference is that py-wannesm does an
extra pass through the cost matrix and py-pierre-rouanet
does not do it.

Third, STRAC succesfully find the best alignment cost for
all pairs in the benchmark, even for trace pairs that require
memory beyond Numpy capabilities (the last two blue dots in
Figure 5). The key insight behind is that STRAC implements
the cost matrix data structure as a hybrid between memory
and disk, i.e. moving such memory needs to disk.
Both Python implementations (py-wannesm and py-

pierre-rouanet) systematically take at least one order of mag-
nitude longer to run, compared to STRAC. The main reason
behind this is that Python usually compiles code at runtime,
while Java compiles it in advance, making a faster program.
Besides, most JVMs perform Just-In-Time compilation to
all or part of programs to native code, which significantly
improves performance, but mainstream Python does not do
this.
Recall that best alignment calculation using naive DTW

implementation is non-scalable by its space-time quadratic
nature, any implementation of DTW (even the one included
in STRAC) eventually will run out of space (in memory or
disk) and execution time will be near to impossible. How-
ever, STRAC can deal with all trace pairs of our benchmark
thanks to its hybrid strategy that leverages both the disk
and the memory. To align an average trace of 100k instruc-
tions, STRAC takes approx. 14 minutes in a PC like the one
mentioned in Subsection 4.2.

4.4 Answer to RQ2: Consistency
In Figure 6, we plot the alignment cost for 100 trace pairs, the
blue dots represent pairs extracted from the same page, the
orange dots illustrate trace pairs taken from two different
pages. Each column corresponds to a given web page. Green
dots represent pairs with the maximum alignment cost for
each site: an alignment of the web page treated in the column
with a trace from the site cited above the dot. For example,
the green dot in the first column is an alignment of a trace
pair (2019.splashcon, youtube).

In Figure 6, we observe that, for each site, traces from the
same page have a lower alignment cost. This is consistent
with the fact that in these cases, the majority of both traces

27

Scalable Comparison of JavaScript V8 Bytecode Traces VMIL ’19, October 22, 2019, Athens, Greece

0.5 1.0 1.5 2.0 2.5

Alignment difficulty (N ×M) ×1010

102

103

104

A
v
g.

A
li
gn

m
en

t
co

st
E

x
ec

u
ti

on
T

im
e

(s
)

STRAC

py-wannesm

py-pierre-rouanet

Out of memory
- R dtw
- rmaestre
- cpy-wannesm
- cpy-slaypni

Figure 5. Execution time for 12 trace pair comparisons by 7
tools incl. STRAC. Y axis is in logarithmic scale. Four tools
fail even on the smallest traces.

in the pair are the same. On the contrary, the alignment cost
between traces from different pages is higher.

Some cases show blue dots with sparsed high values. This
occurs when external scripts, declared in some pages, present
a high variance in fetching process time. Also, it sometimes
happens that for one script declared in a page, the remote
servers sends different JavaScript code at each every request.
Therefore, the generated bytecode varies more from one
load to another, and the alignment cost is increased, show-
ing a small margin between orange dots and the blue ones.
However, we observe two scenarios when these phenom-
ena are mitigated. First, when the bytecode generated from
the external declaration is larger than the builtin bytecode
(2019.splashcon, UNIV, and Youtube cases present a clear sep-
aration between clusters). Second, when the fetching process
time is stable, as Wikipedia and Github cases show.
In the case of Google, we observe the worst possible sce-

nario. This site has 5 external declared scripts (see Table 1), 3
of them have variable fetching time and their content varies
at each load. These 3 scripts integrate Google Analytics fea-
tures to the site. On the contrary, in the case of Wikipedia,

external declared JavaScripts always provide the same code
in almost constant time. As a result, the generated bytecode
is more deterministic and alignment cost decreases for traces
from the same site. In the case of Wikipedia, alignment costs
for pairs of traces collected from the same page vary between
1926 and 2652. These values are the lowest alignment costs
in the benchmark, and they differ from others in more than
2× in order of magnitude

Overall, the traces from the same (resp. different) page are
located in separated clusters. In all cases, we also observe
groups of orange dots that can be easily separated from other
orange clusters. This separation is a consequence of seman-
tic differences between sites and the increase of JavaScript
declarations. For instance, in the first column of Figure 6,
trace pairs from 2019.splashcon and Youtube home pages
have higher alignment costs. This is a consequence of that
Youtube is a richer feature site as 2019.splashcon is, but they
semantically differ. We also observe this behavior in the case
of Kth and Youtube trace pairs.

V8 compiles builtin JavaScript code to the same bytecode
trace, as we discussed in Subsection 2.1.1. This bytecode
generation is included in all collected traces. To validate this,
we computed the V8 bytecode trace of an empty page: it
contains 40k bytecode instructions on average. This also
represents a constant noise in the alignment computation.
As Figure 6 illustrates, given the alignment cost of two

semantically equivalent traces (blue dots) as a reference,
STRAC is capable of identifying similarity with other page
traces. However, we want to remark that STRAC accuracy
gets improved when JavaScript declarations increase in the
compared sites.

4.5 Answer to RQ3: Distance Functions
In Figure 7, we plot the alignment cost using distance dIns .
Recall that dIns is less restrictive than dSen , the distance
used to answer RQ2. By comparing Figure 7 and Figure 6,
we observe interesting phenomena. First, changing the dis-
tance function breaks the clustering breakdown for Github,
Google and Kth (some blue points get mixed with orange
points). Second, the maximum alignment cost is lower than
in Figure 6 for all sites. These phenomena are consequences
of using a less restrictive distance function, i.e. with dIns ,
only the operator is analyzed in the bytecode instructions
comparison. Overall, the choice of distance function matters.
STRAC can be extended with new distance functions and
provides dSen by default for properly aligning V8 bytecode
traces.
We notice that the impact of the distance function is big-

ger for sites with less JavaScript. For Google, Github and
Wikipedia, using dIns is bad because it breaks the cluster-
ing. For the remaining three websites, which involve more
JavaScript features, while the alignment changes, the core
property of the alignment of identifying semantically equiv-
alent traces still holds.

28

VMIL ’19, October 22, 2019, Athens, Greece Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry

60000

80000

100000

120000

140000

160000

180000

200000

A
li
gn

m
en

t
co

st

youtube

2019.splashcon.org

0

20000

40000

60000

80000

100000

120000
youtube

wikipedia.org

20000

40000

60000

80000

100000

120000

140000

youtube

www.github.com

60000

80000

100000

120000

140000

160000
youtube

www.google.com

40000

60000

80000

100000

120000

140000
youtube

kth.se

25000

50000

75000

100000

125000

150000

175000

200000
splashcon

youtube.com

Traces computed from the same page

Traces computed from two different pages

Maximum alignment cost

Figure 6. Alignment costs for 100 trace pair comparisons using dSen as distance function.

5 Related Work
DTW is memory greedy on trace size, a similar problem
arises when dealing with streaming traces. Oregi et al. [20]
and Martins et al. [15] present a generalization of DTW for
large streaming data. They propose the use of incremen-
tal computation of the cost matrix complemented with a
weighted event distance function adding event positions.
However, their results may differ from the original DTW
warp path. On the contrary, STRAC also computes the exact
alignment cost without approximations.
Kargen et al. [10] propose a combination of data abstrac-

tion and FastDTW to align two program traces at the binary
level. They record and analyze read and write operations to
memory and x86 registers. Also, they argue and they show
that their method scales to large traces. STRAC is also capa-
ble of analyzing such traces, but targets different kinds of
traces: V8 bytecode traces, which are not handled by Kargen
et al.
Ratanaworabhan et al. [23] instrument Internet Explorer

tomeasure JavaScript runtime and static behavior in function
calls and event handlers on real-world websites. By doing so,
they show that common benchmarks, like SpiderMonkey and

V8-Suite, are not representative of real application behavior.
We could use STRAC to perform a similar analysis onmodern
browsers.

With JALANGI, Sen et al. [26] provide a framework to dy-
namically analyze JavaScript. The framework works through
source code instrumentation. JALANGI associates shadow
values to variables and objects in the instrumented code, Sen
et al. argue that most of of state-of-the-art dynamic analysis
techniques can be implemented, like concolic evaluation and
taint analysis. However, JALANGI has several limitations
dealing with builtin code and instrumentation can decrease
instrumented code execution performance. With STRAC, we
propose to use V8 bytecode traces to compare JavaScript
semantic similarity without JavaScript instrumentation.
Fang et al. [5] propose a JavaScript malicious code de-

tection model based on neural networks. To mitigate the
obfuscation techniques used in malicious code, they analyze
the dynamic information recorded in V8 bytecode traces.
Both STRAC and Fang et al. consider V8 bytecode traces, yet
the usages are different: they do anomaly detection while
we do trace comparison.

29

Scalable Comparison of JavaScript V8 Bytecode Traces VMIL ’19, October 22, 2019, Athens, Greece

60000

80000

100000

120000

140000

160000

A
li
gn

m
en

t
co

st

youtube

2019.splashcon.org

0

20000

40000

60000

80000

100000

120000
youtube

wikipedia.org

20000

40000

60000

80000

100000

120000

140000
youtube

www.github.com

20000

40000

60000

80000

100000

120000

140000

youtube

www.google.com

40000

60000

80000

100000

120000

140000
youtube

kth.se

40000

60000

80000

100000

120000

140000

160000

splashcon

youtube.com

Traces computed from the same page

Traces computed from two different pages

Maximum alignment cost

Figure 7. Alignment cost for 100 trace pair comparisons using dIns as distance function.

6 Conclusion
In this paper, we presented a tool, called STRAC, for aligning
execution traces. STRAC is tailored to traces of the JavaScript
V8 engine. STRAC implements an optimized version of the
DTW algorithm and two of its approximations. Our exper-
iments show that STRAC scales to real-world JavaScript
traces consisting of V8 bytecodes. STRAC provides two dis-
tance functions for trace event comparison and can be con-
figured with any arbitrary distance function. Our evaluation
indicates that STRAC performs better than state of the art
DTW implementations, for 6 representative web sites.

We have shown that V8 bytecode contains redundancy and
that an empty page includes more than 40k trace instructions.
By removing this redundant and useless trace instructions,
the alignment would get better. In our future work, we will
study how to remove redundancy in V8 bytecode traces, for
providing a better behavioral similarity measure for modern
web pages full of JavaScript code.

Acknowledgments
This material is based upon work supported by the Swedish
Foundation for Strategic Research under the Trustfull project

and by the Wallenberg Autonomous Systems and Software
Program (WASP).

References
[1] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and

Michael D. Ernst. 2011. Leveraging Existing Instrumentation to Au-
tomatically Infer Invariant-Constrained Models. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering - SIGSOFT/FSE ’11 (2011). ACM
Press, 267. https://doi.org/10.1145/2025113.2025151

[2] Berkeley Churchill, Oded Padon, Rahul Sharma, and Alex Aiken. 2019.
Semantic ProgramAlignment for Equivalence Checking. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2019). ACM, New York, NY, USA, 1027–1040.
https://doi.org/10.1145/3314221.3314596

[3] Numpy community. 2018. Numeric python. https://www.numpy.org/
index.html

[4] V8 JavaScript engine. 2016. Ignition design documentation. https:
//v8.dev/docs/ignition

[5] Y. Fang, C. Huang, L. Liu, and M. Xue. 2018. Research on Malicious
JavaScript Detection Technology Based on LSTM. IEEE Access 6 (2018),
59118–59125. https://doi.org/10.1109/ACCESS.2018.2874098

[6] Toni Giorgino. 2009. Computing and Visualizing Dynamic TimeWarp-
ing Alignments in R: The dtw Package. Journal of Statistical Software,
Articles 31, 7 (2009), 1–24. https://doi.org/10.18637/jss.v031.i07

30

VMIL ’19, October 22, 2019, Athens, Greece Javier Cabrera Arteaga, Martin Monperrus, and Benoit Baudry

[7] F. Itakura. 1975. Minimum prediction residual principle applied to
speech recognition. IEEE Transactions on Acoustics, Speech, and Signal
Processing 23, 1 (February 1975), 67–72. https://doi.org/10.1109/TASSP.
1975.1162641

[8] G. Jiang, H. Chen, C. Ungureanu, and K. Yoshihira. 2007. Multires-
olution Abnormal Trace Detection Using Varied-Length n-Grams
and Automata. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C (Applications and Reviews) 37, 1 (Jan 2007), 86–97. https:
//doi.org/10.1109/TSMCC.2006.871569

[9] T. Kamiya. 2018. Code difference visualization by a call tree. In 2018
IEEE 12th International Workshop on Software Clones (IWSC). 60–63.
https://doi.org/10.1109/IWSC.2018.8327321

[10] Ulf Kargén and Nahid Shahmehri. 2017. Towards Robust Instruction-
level Trace Alignment of Binary Code. In Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software Engineering
(ASE 2017). IEEE Press, Piscataway, NJ, USA, 342–352. http://dl.acm.
org/citation.cfm?id=3155562.3155608

[11] Hyunjoo Kim, Jonghyun Kim, Youngsoo Kim, Ikkyun Kim, Kuinam J.
Kim, and Hyuncheol Kim. 2017. Improvement of malware detection
and classification using API call sequence alignment and visualization.
Cluster Computing (12 Sep 2017). https://doi.org/10.1007/s10586-017-
1110-2

[12] Daniel Lemire. 2008. Faster Retrieval with a Two-Pass Dynamic-Time-
Warping Lower Bound. CoRR abs/0811.3301 (2008). arXiv:0811.3301
http://arxiv.org/abs/0811.3301

[13] Y. Lou, H. Ao, and Y. Dong. 2015. Improvement of Dynamic Time
Warping (DTW) Algorithm. In 2015 14th International Symposium on
Distributed Computing and Applications for Business Engineering and
Science (DCABES). 384–387. https://doi.org/10.1109/DCABES.2015.103

[14] Marcelo De A. Maia, Victor Sobreira, Klérisson R. Paixão, Ra A. De
Amo, and Ilmério R. Silva. 2008. Using a sequence alignment algorithm
to identify specific and common code from execution traces. In Pro-
ceedings of the 4th International Workshop on Program Comprehension
through Dynamic Analysis (PCODA. 6–10.

[15] R. M. Martins and A. Kerren. 2018. Efficient Dynamic Time Warping
for Big Data Streams. In 2018 IEEE International Conference on Big Data
(Big Data). 2924–2929. https://doi.org/10.1109/BigData.2018.8621878

[16] Ross McIlroy. 2016. Ignition: V8 Inter-
preter. https://docs.google.com/document/d/
11T2CRex9hXxoJwbYqVQ32yIPMh0uouUZLdyrtmMoL44/edit

[17] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen. 2014. On the Use of
Stack Traces to Improve Text Retrieval-Based Bug Localization. In 2014
IEEE International Conference on Software Maintenance and Evolution.
151–160. https://doi.org/10.1109/ICSME.2014.37

[18] Saul B. Needleman and Christian D. Wunsch. 1970. A General Method
Applicable to the Search for Similarities in the Amino Acid Sequence

of Two Proteins. 48, 3 (1970), 443–453. https://doi.org/10.1016/0022-
2836(70)90057-4

[19] V8 official web page. 2019. V8 JavaScript Engine. https://v8.dev/
[20] Izaskun Oregi, Aritz Pérez, Javier Del Ser, and José A. Lozano. 2017. On-

Line Dynamic Time Warping for Streaming Time Series. In Machine
Learning and Knowledge Discovery in Databases, Michelangelo Ceci,
Jaakko Hollmén, Ljupco Todorovski, and Saso Vens, Celinand Dzeroski
(Eds.). Springer International Publishing, Cham, 591–605.

[21] The Chromium Projects. 2019. Run Chromium with Flags - The
Chromium Projects. https://www.chromium.org/developers/how-
tos/run-chromium-with-flags#TOC-V8-Flags

[22] David A Ramos and Dawson R. Engler. 2011. Practical, Low-effort
Equivalence Verification of Real Code. In Proceedings of the 23rd Inter-
national Conference on Computer Aided Verification (CAV’11). Springer-
Verlag, Berlin, Heidelberg, 669–685. http://dl.acm.org/citation.cfm?
id=2032305.2032360

[23] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn. 2010.
JSMeter: Comparing the Behavior of JavaScript Benchmarks with Real
Web Applications. In Proceedings of the 2010 USENIX Conference onWeb
Application Development (WebApps’10). USENIX Association, Berkeley,
CA, USA, 3–3. http://dl.acm.org/citation.cfm?id=1863166.1863169

[24] H. Sakoe and S. Chiba. 1978. Dynamic programming algorithm
optimization for spoken word recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing 26, 1 (February 1978), 43–49.
https://doi.org/10.1109/TASSP.1978.1163055

[25] Stan Salvador and Philip Chan. 2007. FastDTW: Toward Accurate
Dynamic Time Warping in Linear Time and Space. Intell. Data Anal.
11, 5 (Oct. 2007), 561–580. http://dl.acm.org/citation.cfm?id=1367985.
1367993

[26] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
2013. Jalangi: A Selective Record-replay and Dynamic Analysis Frame-
work for JavaScript. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2013). ACM, New York,
NY, USA, 488–498. https://doi.org/10.1145/2491411.2491447

[27] Ryo Suzuki, Gustavo Soares, Andrew Head, Elena Glassman, Ruan
Reis, Melina Mongiovi, Loris D’Antoni, and Bjoern Hartmann. 2017.
TraceDiff: Debugging Unexpected Code Behavior Using Trace Di-
vergences. CoRR abs/1708.03786 (2017). arXiv:1708.03786 http:
//arxiv.org/abs/1708.03786

[28] Toon Verwaest and Marja Hölttä. 2019. Blazingly Fast Parsing, Part 2:
Lazy Parsing · V8. https://v8.dev/blog/preparser

[29] M. Weber, R. Brendel, and H. Brunst. 2012. Trace File Comparison
with a Hierarchical Sequence Alignment Algorithm. In 2012 IEEE 10th
International Symposium on Parallel and Distributed Processing with
Applications. 247–254. https://doi.org/10.1109/ISPA.2012.40

31

	Contents
	Thesis
	Introduction
	Software Monoculture
	Software Diversification
	Research questions
	Contributions
	Publications

	Background & State of the art
	Wasm overview
	From source to Wasm
	WebAssembly specification
	WebAssembly security

	Software Diversification
	Variants' generation
	Variants' equivalence
	Usages of Software Diversity

	Open challenges

	Automatic Diversity for Wasm
	Global approach
	CROW: Code Randomization of WebAssembly
	Exploration
	Constant inferring
	Removing subsequent optimizations for LLVM

	MEWE: Multi-variant Execution for WebAssembly
	Multivariant generation
	The Mixer

	Accompanying Source Code

	Methodology
	Corpora
	RQ1. To what extent can we artificially generate program variants for WebAssembly?
	RQ2. To what extent are the generated variants dynamically different?
	RQ3. To what extent do the artificial variants exhibit different execution times on edge-cloud platforms?

	Results
	RQ1. To what extent can we artificially generate program variants for WebAssembly?
	Program's population
	Challenges for automatic diversification
	Properties for large diversification

	RQ2. To what extent are the generated variants dynamically different?
	Stack operation traces.
	Execution times.

	RQ3. To what extent do the artificial variants exhibit different execution times on edge-cloud platforms?
	Execution times

	Conclusion and Future Work
	Summary of the results
	Future work

	Bibliography

	Included papers
	Superoptimization of WebAssembly Bytecode
	CROW: Code Diversification for WebAssembly
	Multi-Variant Execution at the Edge
	Scalable Comparison of JavaScript V8 Bytecode Traces

